Skip to main content
Log in

Profile Likelihood-Based Confidence Interval for the Standard Deviation of the Two-Parameter Exponential Distribution

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper introduces the novel score function derived using the profile likelihood method to construct the new confidence interval for the standard deviation in the two-parameter exponential distribution. We investigate the performance of the proposed confidence interval using simulations. The results show that the profile likelihood confidence interval performs very well in terms of coverage probability and expected length, and outperforms the standard methods. We also show that the new pivotal quantity obtained from the score function based on the profile likelihood had an approximate standard normal distribution, supported by statistical theory. The confidence interval is illustrated with two datasets on time at failure for a fleet of backhoes in the United States and times between system failures, to confirm simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. G. Casella and R. L. Berger, Statistical Inference (Duxbury, California, 2002).

    MATH  Google Scholar 

  2. A. Wald, ‘‘On the efficient design of statistical investigations,’’ Ann. Math. Stat. 14, 134–140 (1943).

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Weerahandi, ‘‘Generalized confidence intervals,’’ J. Am. Stat. Assoc. 88, 899–905 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Berger, J. L. Melice, and C. Demuth, ‘‘Statistical distributions of daily and high atmospheric SO2 concentrations,’’ Atmos. Environ. 16, 2863–2877 (1982).

    Article  Google Scholar 

  5. A. M. Dijk, A. A. Meesters, J. Schellekens, and L. A. Bruijnzeel, ‘‘A two-parameter exponential rainfall depth-intensity distribution applied to runoff and erosion modelling,’’ J. Hydrol. 300, 155–171 (2005).

    Article  Google Scholar 

  6. D. M. Louit, R. Pascual, and A. K. S. Jardine, ‘‘A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data,’’ Reliab. Eng. Syst. Safety 94, 1618–1628 (2009).

    Article  Google Scholar 

  7. H. Lu and G. Fang, ‘‘Estimating the emission source reduction of PM10 in central Taiwan,’’ Chemosphere 54, 805–814 (2004).

    Article  Google Scholar 

  8. D. Park, Y. Song, and L. A. Roesner, ‘‘Effect of the seasonal rainfall distribution on storm-water quality capture volume estimation,’’ J. Water. Resour. Plan. Manage. 139, 45–52 (2013).

    Article  Google Scholar 

  9. K. P. S. Warsono, A. A. Bartolucci, and S. Bae, ‘‘Mathematical modeling of environmental data,’’ Math. Comput. Model. 33, 793–800 (2001).

    Article  MATH  Google Scholar 

  10. N. L. Johnson and S. Kotz, Continuous Univariate Distributions (Wiley, Boston, 1970).

    MATH  Google Scholar 

  11. A. Granea and J. Fortiana, ‘‘A location- and scale-free goodness-of-fit statistic for the exponential distribution based on maximum correlations,’’ Statistics 43, 1–12 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  12. G. J. Hahn and W. Q. Meeker, Statistical Interval: A Guide for Practitioners (Wiley, Hoboken, 1991).

    Book  MATH  Google Scholar 

  13. J. F. Lawless, Statistical Models and Methods for Lifetime Data (Wiley, New York, 2003).

    MATH  Google Scholar 

  14. R. R. A. Awwad, G. K. Abufoudeh, and O. M. Bdair, ‘‘Statistical inference of exponential record data under Kullback-Leibler divergence measure,’’ Stat. Transit. 20, 1–14 (2019).

    MATH  Google Scholar 

  15. J. B. Li and R. Q. Zhang, ‘‘Inference of parameters ratio in two-parameter exponential distribution,’’ Chin. J. Appl. Prob. Statist. 26, 81–88 (2010).

    MATH  Google Scholar 

  16. C. Petropoulos, ‘‘New classes of improved confidence intervals for the scale parameter of a two-parameter exponential distribution,’’ Stat. Methodol. 8, 401–410 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. S. Jianhong and L. Hongmei, ‘‘Inferences on the difference and ratio of the means of two independent two-parameter exponential distribution,’’ Chin. J. Appl. Prob. Statist. 29, 87–96 (2013).

    MathSciNet  MATH  Google Scholar 

  18. J. B. Li, W. Song, and J. Shi, ‘‘Parametric bootstrap simultaneous confidence intervals for differences of means from several two-parameter exponential distributions,’’ Stat. Probab. Lett. 106, 39–45 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Belaghi, H. Bevrani, and M. Mohammadi, ‘‘The analysis of the two parameter exponential distribution based on progressive type II censored data,’’ J. Turkish Stat. Assoc. 8, 15–23 (2015).

    MathSciNet  MATH  Google Scholar 

  20. L. Jiang and A. C. M. Wong, ‘‘Interval estimations of the two-parameter exponential distribution,’’ J. Prob. Stat. 2012, 1–18 (2012).

    Article  MathSciNet  Google Scholar 

  21. M. R. Kazemi and Z. Nicknam, ‘‘Estimation of P(X>Y) for inverted exponential-two parameter exponential models (generalized variable approach),’’ J. Stat. Appl. Prob. 6, 133–138 (2017).

    Article  Google Scholar 

  22. K. Krishnamoorthy and Y. Xia, ‘‘Confidence intervals for a two-parameter exponential distribution: One-and two-sample problems,’’ Commun. Stat. - Theory Methods 47, 935–952 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Sangnawakij and S. Niwitpong, ‘‘Confidence intervals for coefficients of variation in two-parameter exponential distributions,’’ Commun. Stat. – Simul. Comput. 46, 6618–6630 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Zheng, ‘‘Penalized maximum likelihood estimation of two-parameter exponential distributions,’’ PhD Thesis (Univ. of Minnesota, 2013).

  25. S. A. Murphy and A. W. van der Vaart, ‘‘On profile likelihood,’’ J. Am. Stat. Assoc. 95, 449–465 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Böhning, R. Kuhnert, and S. Rattanasiri, Meta-Analysis of Binary Data using Profile Likelihood (Chapman and Hall/CRC, Boca Raton, 2008).

    Book  MATH  Google Scholar 

  27. G. A. Young and R. L. Smith, Essentials of Statistical Inference (Cambridge Univ. Press, New York, 2005).

    Book  MATH  Google Scholar 

  28. P. Srisuradetchai, ‘‘Profile likelihood-based confidence intervals for the mean of inverse Gaussian distribution,’’ J. King Mongkut’s Univ. Technol. North Bangkok 27, 340–350 (2017).

    Google Scholar 

  29. P. Srisuradetchai, ‘‘Simple formulas for profile- and estimated-likelihood based on confidence intervals for the mean of inverse Gaussian distribution,’’ J. King Mongkut’s Univ. Technol. North Bangkok 27, 467–479 (2017).

    Google Scholar 

  30. A. Niyomdecha and P. Srisuradetchai, ‘‘Using re-parametrized profile likelihoods to construct Wald confidence intervals for the mean of inverse gaussian distribution,’’ in Proceedings of National Graduate Research Conference (2018), Vol. 26, pp. 349–361.

  31. S. Mahdi, ‘‘One-sided confidence interval estimation for Weibull shape and scale parameters,’’ Mathematics 12, 61–72 (2012).

    Google Scholar 

  32. V. Pradhan, K. K. Saha, T. Banerjee, and J. C. Evans, ‘‘Weighted profile likelihood-based confidence interval for the difference between two proportions with paired binomial data,’’ Stat. Med. 33, 2984–2997 (2014).

    Article  MathSciNet  Google Scholar 

  33. Z. Yang and M. Xie, ‘‘Efficient estimation of the Weibull shape parameter based on a modified profile likelihood,’’ J. Stat. Comput. Simul. 73, 115–123 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  34. V. K. Rohatgi and A. K. Saleh, An Introduction to Probability and Statistics (Wiley, New Jersey, 2001).

    MATH  Google Scholar 

  35. R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (Vienna, Austria, 2019).

    Google Scholar 

  36. M. Rahman and L. M. Pearson, ‘‘Estimation in two-parameter exponential distribution,’’ J. Stat. – Comput. Simul. 70, 371–386 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Abt and W. J. Welch, ‘‘Fisher information and maximum-likelihood estimation of covariance parameters in Gaussian stochastic processes,’’ Can. J. Stat. 26, 127–137 (1998).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The author gratefully acknowledge the financial support provided by Faculty of Science and Technology, Thammasat University, Contract no. SciGR5/2563.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sangnawakij.

Additional information

(Submitted by A. I. Volodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangnawakij, P. Profile Likelihood-Based Confidence Interval for the Standard Deviation of the Two-Parameter Exponential Distribution. Lobachevskii J Math 43, 2274–2285 (2022). https://doi.org/10.1134/S1995080222110269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222110269

Keywords:

Navigation