Skip to main content
Log in

Growth of Solutions to Linear Differential Equations with Analytic Coefficients in a Punctured Disc

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the growth of solutions of the linear differential equation

$$f^{\left(k\right)}+A_{k-1}\left(z\right)\exp\left\{\frac{a_{k-1}}{z^{n}}\right\}f^{\left(k-1\right)}+...+A_{0}\left(z\right)\exp\left\{\frac{a_{0}}{z^{n}}\right\}f=F\left(z\right),$$

where \(A_{j}\left(z\right)\) are analytic functions in \(D\left(0,R\right)=\left\{z\in\mathbb{C}:0<\left|z\right|<R\right\}\) and \(a_{j}\ \left(j=0,...,k-1\right)\) are complex numbers. Under some conditions, we prove that every non trivial solution is of infinite order of growth near the singular point \(z=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Amemiya and M. Ozawa, ‘‘Non-existence of finite order solutions of \(w^{\prime\prime}+e^{-z}w^{\prime}+Q(z)w=0\),’’ Hokkaido Math. J. 10, 1–17 (1981).

    MathSciNet  MATH  Google Scholar 

  2. L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen (Springer, Berlin, 1965).

    Book  MATH  Google Scholar 

  3. Z. X. Chen, ‘‘The growth of solutions of \(f^{\prime\prime}+e^{-z}f^{\prime}+Q(z)f=0\) where the order \((Q)=1\),’’ Sci. China, Ser. A 45, 290–300 (2002).

    MathSciNet  MATH  Google Scholar 

  4. Z.-X. Chen, ‘‘On the hyper-order of solutions of higher order differential equations,’’ Chin. Ann. Math., Ser. B 24, 501–508 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  5. Z.-X. Chen, ‘‘On the growth of solutions of a class of higher order differential equations,’’ Acta Math. Sci., Ser. B 24, 52–60 (2004).

    Google Scholar 

  6. Z. X. Chen and K. H. Shon, ‘‘On the growth of solutions of a class of higher order linear differential equations,’’ Acta Math. Sci., Ser. B 24, 52–60 (2004).

    MATH  Google Scholar 

  7. S. Cherief and S. Hamouda, ‘‘Growth of solutions of a class of linear differential equations near a singular point,’’ Kragujevac J. Math. 47, 187–201 (2023).

    MATH  Google Scholar 

  8. S. Cherief and S. Hamouda, ‘‘Linear differential equations with analytic coefficients having the same order near a singular point,’’ Bull. Iran. Math. Soc. 47, 1737–1749 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Cherief and S. Hamouda, ‘‘Finite and infinite order of growth of solutions to linear differential equations near a singular point,’’ Math. Bohem. 145 (3), 1–18 (2021).

    MathSciNet  MATH  Google Scholar 

  10. S. Cherief and S. Hamouda, ‘‘Exponent of convergence of solutions to linear differential equations near a singular point,’’ Graduate J. Math. 6, 22–30 (2021).

    MathSciNet  MATH  Google Scholar 

  11. H. Fettouch and S. Hamouda, ‘‘Growth of local solutions to linear differential equations around an isolated essential singularity,’’ Electron. J. Differ. Equat. 2016 (226), 1–10 (2016).

    MathSciNet  MATH  Google Scholar 

  12. G. G. Gundersen, ‘‘On the question of whether \(f^{\prime\prime}+e^{-z}f^{\prime}+B(z)f=0\) can admit a solution \(f\not\equiv 0\) of finite order,’’ Proc. R. Soc. Edinburgh 102A, 9–17 (1986).

    Article  MATH  Google Scholar 

  13. S. Hamouda, ‘‘Properties of solutions to linear differential equations with analytic coefficients in the unit disc,’’ Electron. J. Differ. Equat. 2012 (177), 1–9 (2012).

    MathSciNet  MATH  Google Scholar 

  14. S. Hamouda, ‘‘The possible orders of growth of solutions to certain linear differential equations near a singular point,’’ J. Math. Anal. Appl. 458, 992–1008 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Hamouda, ‘‘Estimates of the logarithmic derivative near a singular point and applications,’’ Rad. Hrvat. Akad. Znan. Umjet. Mat. Znan. 24 (542), 99–116 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  16. W. K. Hayman, Meromorphic Functions (Clarendon, Oxford, 1964).

    MATH  Google Scholar 

  17. W. P. Huang, J. L. Zhou, J. Tu, and J. H. Ning, ‘‘On the hyper-order of solutions of two class of complex linear differential equations,’’ Adv. Differ. Equat., 234, 1–12 (2015).

    MathSciNet  Google Scholar 

  18. A. Ya. Khrystiyanyn and A. A. Kondratyuk, ‘‘On the Nevanlinna theory for meromorphic functions on annuli,’’ Mat. Stud. 23, 19–30 (2005).

    MathSciNet  MATH  Google Scholar 

  19. A. A. Kondratyuk and I. Laine, ‘‘Meromorphic functions in multiply connected domains,’’ in Fourier Series Methods in Complex Analysis, Univ. Joensuu Dept. Math. Rep. Ser. (Univ. Joensuu, Joensuu, 2006), Vol. 10, pp. 9–111.

  20. R. Korhonen, ‘‘Nevanlinna theory in an annulus,’’ in Value Distribution Theory and Related Topics, Vol. 3 of Adv. Complex Anal. Appl. (Kluwer Academic, Boston, MA, 2004), pp. 167–179.

  21. K. H. Kwon, ‘‘Nonexistence of finite order solutions of certain second order linear differential equations,’’ Kodai Math. J. 19, 378–387 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. Laine, Nevanlinna Theory and Complex Differential Equations (Walter de Gruyter, Berlin, 1993).

    Book  MATH  Google Scholar 

  23. E. L. Mark and Y. Zhuan, ‘‘Logarithmic derivatives in annulus,’’ J. Math. Anal. Appl. 356 (2009).

  24. A. I. Markushevich, Theory of Functions of a Complex Variable (Prentice-Hall, London, 1967), Vol. 2.

    MATH  Google Scholar 

  25. M. Tsuji, Potential Theory in Modern Function Theory (Chelsea, New York, 1975).

    MATH  Google Scholar 

  26. J. Tu and C.-F. Yi, ‘‘On the growth of solutions of a class of higher order linear differential equations with coefficients having the same order,’’ J. Math. Anal. Appl. 340, 487–497 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Valiron, Lectures on the General Theory of Integral Functions (Chelsea, New York, 1949).

    Google Scholar 

  28. J. Wang and I. Laine, ‘‘Growth of solutions of nonhomogeneous linear differential equations,’’ Abstr. Appl. Anal. 2009, 363927 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. M. Whittaker, ‘‘The order of the derivative of a meromorphic function,’’ J. London Math. Soc. 11, 82–87 (1936); Jbuch 62, 357 (1936).

    Google Scholar 

  30. L. Yang, Value Distribution Theory (Springer, Berlin, 1993).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the referee for his/her time and useful comments towards the improvement of this paper.

Funding

This work is supported by University of Mostaganem (UMAB) and PRFU Project (Projet de Recherche Formation Universitaire, Code C00L03UN270120220005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Mazouz or S. Hamouda.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazouz, S., Hamouda, S. Growth of Solutions to Linear Differential Equations with Analytic Coefficients in a Punctured Disc. Lobachevskii J Math 43, 2230–2243 (2022). https://doi.org/10.1134/S199508022211021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022211021X

Keywords:

Navigation