Skip to main content
Log in

A Generalization of the Bohr–Rogosinski Sum

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the classical Bohr sum for analytic functions defined on the unit disk in a general setting. In addition, we discuss a generalization of the Bohr–Rogosinski sum for a class of analytic functions subordinate to the univalent functions in the unit disk. Several well-known results are observed from the consequences of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Abu-Muhanna, ‘‘Bohr’s phenomenon in subordination and bounded harmonic classes,’’ Complex Var. Ellipt. Equat. 55, 1071–1078 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. Y. Abu-Muhanna and R. M. Ali, ‘‘Bohr’s phenomenon for analytic functions into the exterior of a compact convex body,’’ J. Math. Anal. Appl. 379, 512–517 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Abu-Muhanna and R. M. Ali, ‘‘Bohr’s phenomenon for analytic functions and the hyperbolic metric,’’ Math. Nachr. 286, 1059–1065 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. Y. Abu-Muhanna, R. M. Ali, and S. K. Lee, ‘‘The Bohr operator on analytic functions and sections,’’ J. Math. Anal. Appl. 496, 124837 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  5. Y. Abu-Muhanna, R. M. Ali, and S. Ponnusamy, ‘‘On the Bohr inequality,’’ in Progress in Approximation Theory and Applicable Complex Analysis, Ed. by N. K. Govil et al., Springer Optim. Appl. 117, 265–295 (2016).

  6. M. B. Ahmed, V. Allu, and H. Halder, ‘‘Bohr phenomenon for analytic functions on simply connected domains,’’ Ann. Acad. Sci. Fenn., Ser. A I 47, 103–120 (2022).

  7. L. Aizenberg, ‘‘Generalization of results about the Bohr radius for power series,’’ Stud. Math. 180, 161–168 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. A. Alkhaleefah, I. R. Kayumov, and S. Ponnusamy, ‘‘On the Bohr inequality with a fixed zero coefficient,’’ Proc. Am. Math. Soc. 147, 5263–5274 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. A. Alkhaleefah, I. R. Kayumov, and S. Ponnusamy, ‘‘Bohr–Rogosinski inequalities for bounded analytic functions,’’ Lobachevskii J. Math. 41, 2110–2119 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. G. Avkhadiev and K.-J. Wirths, Schwarz–Pick Type Inequalities, Frontiers in Mathematics (Birkhäuser, Basel, 2009).

    Book  MATH  Google Scholar 

  11. B. Bhowmik and N. Das, ‘‘Bohr phenomenon for subordinating families of certain univalent functions,’’ J. Math. Anal. Appl. 462, 1087–1098 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Bhowmik and N. Das, ‘‘Bohr phenomenon for locally univalent functions and logarithmic power series,’’ Comput. Methods Funct. Theory 19, 729–745 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Bohr, ‘‘A theorem concerning power series,’’ Proc. London Math. Soc. 13 (2), 1–5 (1914).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. L. Duren, Univalent Functions (Springer, New York, 1983).

    MATH  Google Scholar 

  15. S. Evdoridis, S. Ponnusamy, and A. Rasila, ‘‘Improved Bohr’s inequality for locally univalent harmonic mappings,’’ Indag. Math. (N.S.) 30, 201–213 (2019).

  16. S. Evdoridis, S. Ponnusamy, and A. Rasila, ‘‘Improved Bohr’s inequality for shifted disks,’’ Results Math. 76 (14) (2021).

  17. R. Fournier and St. Ruscheweyh, ‘‘On the Bohr radius for simply connected plane domains,’’ CRM Proc. Lect. Notes 51, 165–171 (2010).

  18. I. R. Kayumov, D. M. Khammatova, and S. Ponnusamy, ‘‘On the Bohr inequality for the Cesáro operator,’’ C. R. Math. Acad. Sci. Paris 358, 615–620 (2020).

    MathSciNet  MATH  Google Scholar 

  19. I. R. Kayumov, D. M. Khammatova, and S. Ponnusamy, ‘‘The Bohr inequality for the generalized Cesáro averaging operators,’’ Mediterr. J. Math. 19, 1–16 (2022).

    Article  MATH  Google Scholar 

  20. I. R. Kayumov, D. M. Khammatova, and S. Ponnusamy, ‘‘Bohr–Rogosinski phenomenon for analytic functions and Cesáro operators,’’ J. Math. Anal. Appl. 496, 124824 (2021).

    Article  MATH  Google Scholar 

  21. I. R. Kayumov and S. Ponnusamy, ‘‘Improved version of Bohr’s inequality,’’ C. R. Math. 356, 272–277 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. I. R. Kayumov and S. Ponnusamy, ‘‘Bohr’s inequalities for analytic functions with lacunary series and harmonic functions,’’ J. Math. Anal. Appl. 465, 857–871 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  23. I. R. Kayumov and S. Ponnusamy, ‘‘On a powered Bohr inequality,’’ Ann. Acad. Sci. Fenn., Ser. A I 44, 301–310 (2019).

  24. I. R. Kayumov, S. Ponnusamy, and N. Shakirov, ‘‘Bohr radius for locally univalent harmonic mappings,’’ Math. Nachr. 291, 1757–1768 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Kumar and S. K. Sahoo, ‘‘Bohr inequalities for certain integral operators,’’ Mediterr. J. Math. 18, 268 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Landau and D. Gaier, Darstellung und Begrüundung einiger neuerer Ergebnisse der Funktionentheorie (Springer, Berlin, 1986).

    Book  MATH  Google Scholar 

  27. G. Liu, Z. H. Liu, and S. Ponnusamy, ‘‘Refined Bohr inequality for bounded analytic functions,’’ Bull. Sci. Math. 173, 103054 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. S. Liu and S. Ponnusamy, ‘‘Multidimensional analogues of refined Bohr’s inequality,’’ Proc. Am. Math. Soc. 149, 2133–2146 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  29. M. S. Liu, S. Ponnusamy, and J. Wang, ‘‘Bohr’s phenomenon for the classes of Quasi-subordination and \(K\)-quasiregular harmonic mappings,’’ RACSAM 114, 115 (2020).

    Article  MATH  Google Scholar 

  30. Z. H. Liu and S. Ponnusamy, ‘‘Bohr radius for subordination and \(K\)-quasiconformal harmonic mappings,’’ Bull. Malays. Math. Sci. Soc. 42, 2151–2168 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  31. M. S. Liu, Y. M. Shang, and J. F. Xu, ‘‘Bohr-type inequalities of analytic functions,’’ J. Inequal. Appl., 345 (2018).

  32. S. S. Miller and P. T. Mocanu, Differential Subordinations-Theory and Applications (Marcel Dekker, New York, 2000).

    Book  MATH  Google Scholar 

  33. Ch. Pommerenke, Univalent Functions (Vandenhoeck und Ruprecht, Michigan, 1975).

    MATH  Google Scholar 

  34. Ch. Pommerenke, Boundary Behaviour of Conformal Maps (Springer, New York, 1992).

    Book  MATH  Google Scholar 

  35. S. Ponnusamy, R. Vijayakumar, and K.-J. Wirths, ‘‘Improved Bohr’s phenomenon in quasi-subordination classes,’’ J. Math. Anal. Appl. 506, 125645 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  36. W. Rogosinski, ‘‘Über Bildschranken bei Potenzreihen und ihren Abschnitten,’’ Math. Z. 17, 260–276 (1923).

    Article  MathSciNet  MATH  Google Scholar 

  37. St. Ruscheweyh, ‘‘Two remarks on bounded analytic functions,’’ Serdica 11, 200–202 (1985).

    MathSciNet  MATH  Google Scholar 

  38. I. Schur and G. Szegö, ‘‘Über die Abschnitte einer im Einheitskreise beschrankten Potenzreihe,’’ Sitz.-Ber. Preuss. Acad. Wiss. Berlin Phys.-Math. Kl., 545–560 (1925).

Download references

ACKNOWLEDGMENTS

The authors acknowledge the careful reading of the manuscript and suggestions made by the referee. The authors would like to thank Professor S. Ponnusamy for many fruitful discussions on this topic.

Funding

The work of the first author is supported by CSIR, New Delhi (grant no: 09/1022(0034)/2017-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Kumar or S. K. Sahoo.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sahoo, S.K. A Generalization of the Bohr–Rogosinski Sum. Lobachevskii J Math 43, 2176–2186 (2022). https://doi.org/10.1134/S1995080222110166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222110166

Keywords:

Navigation