Skip to main content
Log in

Limit Distribution for Compositions of Random Operators

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Limit theorems for compositions of independent linear operators acting in a finite dimensional Euclidean space \(E\) are studied. An example of application of the limit theorems to construction of equations corresponding to random independent Affine transformations of a Euclidean space is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. A. Berger, ‘‘Central limit theorem for products of random matrices,’’ Trans. AMS 285, 777–803 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Billingsley, Convergence of Probability Measures (Wiley, New York, 1999).

    Book  MATH  Google Scholar 

  3. V. I. Bogachev and O. G. Smolyanov,Real and Functional Analysis: An University Course (Regular. Khaot. Dinam., Moscow, 2009) [in Russian].

    Google Scholar 

  4. A. V. Bulinskii and M. E. Shirokov, ‘‘On quantum channels and operations preserving finiteness of the von Neumann entropy,’’ Lobachevskii J. Math. 41, 2383–2396 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Chernoff, ‘‘Note on product formulas for operator semigroups,’’ J. Funct. Anal. 2, 238–242 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1971), Vol. 2.

    MATH  Google Scholar 

  7. J. Gough, Yu. N. Orlov, V. Z. Sakbaev, and O. G. Smolyanov, ‘‘Random quantization of hamiltonian systems,’’ Dokl. Math. 103, 122–126 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Sh. Kalmet’ev, Yu. N. Orlov, and V. Zh. Sakbaev, ‘‘Chernoff iterations as a method of averaging of random affine mappings,’’ Comput. Math. Math. Phys. 62 (6), 1030–1041 (2022).

    Google Scholar 

  9. T. Liggett, Interacting Particle Systems (Springer, New York, 1985).

    Book  MATH  Google Scholar 

  10. Yu. N. Orlov, V. Z. Sakbaev, and E. V. Shmidt, ‘‘Operator approach to weak convergence of measures and limit theorems for random operators,’’ Lobachebskii J. Math. 42, 2413–2426 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu. N. Orlov, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Feynman formulas and the law of large numbers for random one-parameter semigroups,’’ Proc. Steklov Inst. Math. 306, 196–211 (2019). https://doi.org/10.1134/S0081543819050171

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu. N. Orlov, V. Zh. Sakbaev, and D. V. Zavadskii, ‘‘Operator random walks and quantum oscillator,’’ Lobachevskii J. Math. 41, 673–682 (2020).

    Article  MathSciNet  Google Scholar 

  13. V. Zh. Sakbaev, ‘‘Averaging of random flows of linear and nonlinear maps,’’ J. Phys.: Conf. Ser. 990, 012012 (2018).

    MathSciNet  Google Scholar 

  14. V. Zh. Sakbaev, O. G. Smolyanov, and N. N. Shamarov, ‘‘Non-Gaussian Lagrangian Feynman-Kac formulas,’’ Dokl. Math. 90, 416–418 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. V. Zh. Sakbaev and O. G. Smolyanov, ‘‘Feynman calculus for random operator-valued functions and their applications,’’ Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 160, 373–383 (2018).

    Google Scholar 

  16. V. Zh. Sakbaev and N. V. Tsoy, ‘‘Analogue of Chernoff theorem for cylindrical pseudomeasures,’’ Lobachevskii J. Math. 41, 2369–2382 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  17. O. G. Smolyanov and E. T. Shavgulidze, Continuum Integrals (URSS, Moscow, 2015) [in Russian].

    Google Scholar 

  18. I. V. Volovich and V. Zh. Sakbaev, ‘‘On quantum dynamics on \(C^{*}\)-algebras,’’ Proc. Steklov Inst. Math. 301, 25–38 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Yu. Zamana, V. Zh. Sakbaev, and O. G. Smolyanov, ‘‘Stochastic processes on the group of orthogonal matrices and evolution equations describing them,’’ Comput. Math. Math. Phys. 60, 1686–1700 (2020). https://doi.org/10.1134/S0965542520100140

    Article  MathSciNet  MATH  Google Scholar 

  20. K. Yu. Zamana, ‘‘Averaging of random orthogonal transformations of domain of functions,’’ Ufa Math. J. 13 (4), 23–40 (2021).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Zh. Sakbaev, E. V. Shmidt or V. Shmidt.

Additional information

(Submitted by G. G. Amosov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakbaev, V.Z., Shmidt, E.V. & Shmidt, V. Limit Distribution for Compositions of Random Operators. Lobachevskii J Math 43, 1740–1754 (2022). https://doi.org/10.1134/S199508022210033X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022210033X

Keywords:

Navigation