Skip to main content
Log in

On the Iterlayer Contact Conditions in Multilayer Thin Body Theory and Some Issues of Splitting Initial-Boundary Value Problems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The interlayer contact conditions for various connections of adjacent layers of a multilayer body are written out. The formulations of initial-boundary value problems are discussed. Tensors-operators of cofactors to the tensor-operator of the equations of motion of the elasticity theory in the displacements of an isotropic homogeneous material and to the stress-operator are obtained, which allow us to decompose the equations and boundary conditions, respectively. From the decomposed equations of the classical theory of elasticity, the corresponding decomposed equations of the static (quasistatic) problem of the theory of prismatic bodies of constant thickness in displacements are obtained. From them the equations in the moments of unknown vector-functions with respect to any systems of orthogonal polynomials are derived. As a special case, the system of equations of the fifth approximation in moments with respect to the system of Legendre polynomials is obtained. Moreover, these equations are derived both without taking into account the boundary conditions on the front surfaces, and with these conditions. The system of equations splits into two systems. One of them is a system with respect to the moments of even orders of the unknown vector-function, and the other one is a system with respect to moments of odd orders of the same functions. Moreover, the matrix differential operators of these systems have a triangular form and their determinants are different from zero. Hence, these systems are consistent. Based on the constructed operator of cofactors to the operator of one of these systems it is decomposed and for each moment of the unknown vector-function we get an elliptic equation of high order (the order of the system depends on the order of approximation), whose characteristic roots are easily found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Bolotin, ‘‘Influence of technological factors on mechanical reliability of composite structures,’’ Mech. Polym., No. 3, 529–540 (1972).

  2. E. D. Braun, N. A. Bushe, I. A. Buyanovskii, et al., Fundamentals of Tribology: Friction, Wear, Lubrication, Ed. by A. V. Chichinadze (Nauka Tekh., Moscow, 1995) [in Russian].

    Google Scholar 

  3. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics (Springer, Berlin, 1976).

    Book  MATH  Google Scholar 

  4. B. G. Galerkin, ‘‘Contribution à la solution générale du problème de la théorie de l’élasticité dans le cas de trois dimensions,’’ C. R. Acad. Sci. 190, 1047–1048 (1930).

    MATH  Google Scholar 

  5. B. G. Galerkin, ‘‘Contribution à la solution générale du problème de la théorie de l’élasticité dans le cas de trois dimensions,’’ C. R. Acad. Sci. 193, 568–571 (1931).

    Google Scholar 

  6. M. Iacovache, ‘‘A generalization of GalerkinтАЩs method for the elasticity equations system,’’ Bull. Acad. Sci., R. P. R., Ser. A 1, 593 (1949).

    MathSciNet  Google Scholar 

  7. I. M. Korovaichuk and B. L. Pelekh, ‘‘A class of nonlinear contact problems of the theory of shells subject to slipping,’’ in Elastic Behavior of Plates and Shells, Collection of Articles (Saratov, 1981), pp. 64–66 [in Russian].

  8. I. V. Kragelskii and I. E. Vinogradova, Coefficients of Friction (Mashgiz, Moscow, 1962) [in Russian].

    Google Scholar 

  9. I. V. Kragelskii, Friction and Wear (Mashinostroenie, Moscow, 1968) [in Russian].

    Google Scholar 

  10. Yu. L. Krasulin and M. Kh. Shorshorov, ‘‘Formation mechanism of joining heterogeneous materials in solid state,’’ Phys.-Chem. Mater. Process., No. 1, 89–94 (1967).

  11. A. S. Kravchuk, ‘‘To the theory of contact problems taking into account friction on the contact surface,’’ J. Appl. Math. Mech. 44, 122–129 (1980).

    Article  MathSciNet  Google Scholar 

  12. V. A. Laz’ko, ‘‘Stressed-deformed state of laminated anisotropic shells under the presence of zones with nonideal contact of layers. 1,’’ Mech. Compos., No. 5, 832–836 (1981).

  13. V. A. Laz’ko, ‘‘Stressed-deformed state of laminated anisotropic shells under the presence of zones with nonideal contact of layers. 2,’’ Mech. Compos., No. 1, 77–84 (1982).

  14. V. A. Laz’ko and O. S. Machuga, ‘‘Determination of boundaries of interlayer deficiencies in laminated anisotropic plates,’’ Mech. Compos., No. 6, 1112–1115 (1985).

  15. M. U. Nikabadze, ‘‘Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind,’’ Mech. Solids 42, 391–421 (2007).

    Article  Google Scholar 

  16. M. U. Nikabadze, ‘‘The application of systems of Legendre and Chebyshev polynomials at modeling of elastic thin bodies with a small size,’’ Available from VINITI No. 720–B2008 (2008).

  17. M. U. Nikabadze, ‘‘Mathematical modeling of elastic thin bodies with two small dimensions with the use of systems of orthogonal polynomials,’’ Available from VINITI No. 722–B2008 (2008).

  18. M. U. Nikabadze and A. R. Ulukhanyan, ‘‘Mathematical modeling of elastic thin bodies with one small dimension with the use of systems of orthogonal polynomials,’’ Available from VINITI No. 723–B2008 (2008).

  19. M. U. Nikabadze, ‘‘Application of systems of orthogonal polynomials in the mathematical modeling of plane elastic thin bodies,’’ Available from VINITI No. 724–B2008 (2008).

  20. M. U. Nikabadze, M. M. Kantor, and A. R. Ulukhanian, ‘‘To mathematical modeling of elastic thin bodies and numerical realization of several problems on the band,’’ Available from VINITI No. 204–B2011 (2011).

  21. M. U. Nikabadze, ‘‘The method of orthogonal polynomials in the classical and micropolar mechanics of elastic thin bodies, II,’’ Available from VINITI No. 136–B2014 (2014).

  22. M. U. Nikabadze, Development of the Method of Orthogonal Polynomials in the Classical and Micropolar Mechanics of Elastic Thin Bodies (Mosk. Gos. Univ, Moscow, 2014) [in Russian].

    Google Scholar 

  23. M. U. Nikabadze, ‘‘Method of orthogonal polynomials in the classical and micropolar mechanics of elastic thin bodies,’’ Doctoral Dissertation (Mosc. Aviat. Inst., Natl. Res. Univ., Moscow, 2014).

  24. M. U. Nikabadze, ‘‘The method of orthogonal polynomials in the classical and micropolar mechanics of elastic thin bodies, I,’’ Available from VINITI No. 135–B2014 (2014).

  25. M. U. Nikabadze, ‘‘Topics on tensor calculus with applications to mechanics,’’ J. Math. Sci. 225, 1–194 (2017). doi 10.1007/s10958-017-3467-4

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Nikabadze and A. Ulukhanyan, ‘‘Some applications of Eigenvalue problems for tensor and tensor-block matrices for mathematical modeling of micropolar thin bodies,’’ Math. Comput. Appl. 24 (1) (2019). https://doi.org/10.3390/mca24010033

  27. M. Nikabadze and A. Ulukhanyan, ‘‘ Mathematical modeling of elastic thin bodies with one small size,’’ in Higher Gradient Materials and Related Generalized Continua, Ed. by H. Altenbach, W. Muller, and B. Abali, Vol. 120 of Advanced Structured Materials (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-30406-5_9

  28. M. U. Nikabadze, ‘‘Splitting of initial boundary value problems in anisotropic linear elasticity theory,’’ Moscow Univ. Mech. Bull. 74, 103–110 (2019). https://doi.org/10.3103/S0027133019050017

    Article  MATH  Google Scholar 

  29. M. U. Nikabadze and A. R. Ulukhanyan, ‘‘Modeling of multilayer thin bodies,’’ Continuum Mech. Thermodyn. 32, 817–842 (2020). https://doi.org/10.1007/s00161-019-00762-6

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Nikabadze and A. Ulukhanyan, ‘‘On the decomposition of equations of micropolar elasticity and thin body theory,’’ Lobachevskii J. Math. 41, 2059–2074 (2020). https://doi.org/10.1134/S1995080220100145

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Nikabadze and A. Ulukhanyan, ‘‘On the theory of multilayer thin bodies,’’ Lobachevskii J. Math. 42, 1900–1911 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Nikabadze and A. Ulukhanyan, ‘‘On some variational principles in micropolar theories of single-layer thin bodies,’’ Contin. Mech. Thermodyn. 34 (2) (2022). https://doi.org/10.1007/s00161-022-01089-5

  33. M. Nikabadze and A. Ulukhanyan, ‘‘Generalized Reissner-type variational principles in the micropolar theories of multilayer thin bodies with one small size,’’ Contin. Mech. Thermodyn. 34 (2) (2022). https://doi.org/10.1007/s00161-022-01091-x

  34. W. Nowacki, Theory of Elasticity (Naukowe Panstwowe Wydawnictwo, Warszawa, 1970).

    MATH  Google Scholar 

  35. B. L. Pelekh and I. M. Korovaichuk, ‘‘A class of problems for laminated composites under the presence of slipping zones on the phase interface,’’ Mech. Compos., No. 2, 342–345 (1981).

  36. B. L. Pelekh and I. M. Korovaichuk, ‘‘Mechanics of composite media with imperfect bonds on phase interfaces,’’ Mech. Compos., No. 4, 606–611 (1984).

  37. B. L. Pelekh and V. V. Tsasyuk, ‘‘Friction of anisotropic surfaced of solid bodies,’’ in Nonclassic Problems of Composites and Composite Structures (Naukova Dumka, Kiev, 1984), pp. 50–51 [in Russian].

    Google Scholar 

  38. B. E. Pobedrya, Numerical Methods in the Theory of Elasticity and Plasticity, 2nd ed. (Mosk. Gos. Univ., Moscow, 1995) [in Russian].

    Google Scholar 

  39. Ya. S. Podstrigach, ‘‘Conditions of heat contact of solid bodies,’’ Dokl. Akad. Nauk Ukr. SSR, No. 7, 872–874 (1963).

    Google Scholar 

  40. Ya. S. Podstrigach and P. R. Shevchuk, ‘‘Temperature fields and stresses in bodies with thin coatings,’’ Heat Stresses Elem. Turbomach., No. 7, 227–233 (1967).

  41. Ya. S. Podstrigach and P. R. Shevchuk, ‘‘Influence of surface layers on the diffusion process and on the stressed state caused by it in solid bodies,’’ Phys.-Chem. Mech. Mater. 3, 575–583 (1967).

    Google Scholar 

  42. Ya. S. Podstrigach and P. R. Shevchuk, ‘‘Stressed-deformed state of heated elastic bodies containing inclusions in the form of thin shells,’’ J. Appl. Mech. 3 (6), 8–16 (1967).

    Google Scholar 

  43. Ya. S. Podstrigach, ‘‘Jump conditions for stresses and displacements on a thin-walled elastic inclusion in a continuum,’’ Dokl. Akad. Nauk Ukr. SSR, No. 12, 30–32 (1982).

    Google Scholar 

  44. A. I. Potapov, Quality Control and Reliability Prediction for Constructions of Composites (Leningrad, 1980) [in Russian].

    Google Scholar 

  45. G. C. Sih, ‘‘Fracture mechanics of composite materials,’’ Mech. Compos., No. 3, 434–446 (1979).

  46. G. A. Vanin, ‘‘Theory of fibrous media with imperfections,’’ Appl. Mech. 13 (10), 14–22 (1977)

    MathSciNet  Google Scholar 

  47. G. A. Vanin, ‘‘Local fractures in fibrous media,’’ in Strength and Destruction of Composites (Riga, 1983), pp. 250–258 [in Russian].

  48. G. A. Vanin, Micromechanics of Composites (Naukova Dumka, Kiev, 1985) [in Russian].

    Google Scholar 

  49. G. A. Vanin and N. P. Semenyuk, Stability of Shells of Composites with Imperfections (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

  50. I. N. Vekua, New Methods for Solving Elliptic Equations (OGIZ, Moscow, 1948) [in Russian].

    Google Scholar 

  51. I. N. Vekua, Fundamentals of Tensor Analysis and Covariant Theory (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Funding

This work was published with the financial support of the Shota Rustaveli National Science Foundation (project no. FR-21-3926).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Nikabadze or A. Ulukhanyan.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikabadze, M., Ulukhanyan, A. On the Iterlayer Contact Conditions in Multilayer Thin Body Theory and Some Issues of Splitting Initial-Boundary Value Problems. Lobachevskii J Math 43, 1945–1961 (2022). https://doi.org/10.1134/S1995080222100304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100304

Keywords:

Navigation