Skip to main content
Log in

Finite Incompatible Deformations in Elastic Solids: Relativistic Approach

Lobachevskii Journal of Mathematics Aims and scope

Cite this article

Abstract

The Lagrangian approach for modeling of relativistic elastic solid with distributed defects is developed. The influence of defects on stress-strain state of the solid is taken into account within differential-geometric framework, which allows to describe the corresponding deformation incompatibility in terms of material connection curvature. The specifity of the developed approach is in four-dimensional relativistic formulation of body-tubes and higher-dimensional formulation for rigged body-tubes represented as total spaces of some principal bundles. This approach makes it possible to account the micropolar and micromorphic behavior of relativistic material particles. The generalized deformation is considered as embedding of a smooth manifold that represents rigged body-time into another smooth manifold that represents rigged space-time. Specific technique for constructing of rigged space-time in terms of fiber bundles is developed. The unified variation formulation is suggested for wide range of micromorphic solids. Particular forms for Lagrangian density aligned with general covariance principle are proposed. The considered approach may be applied for the modelling of accretion processes in large-scaled astrophysical objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. In what follows the conventional designation \(\overrightarrow{{{{a}}}{{{b}}}}\) for the value \(\textrm{vec}({{{a}}},\>{{{b}}})\) will be used. The notation for structure and its underlying set will not be distinguished typographically

  2. The family \((\mathfrak{e}^{\alpha})_{\alpha=0}^{3}\) is basis for \(\mathcal{V}^{\ast}\), dual to \((\boldsymbol{e}_{\alpha})_{\alpha=0}^{3}\).

  3. Note that the curve is given in a special parameterization. From general viewpoint, one can distinguish between paths and curves, where the former are smooth mappings of an real axis interval into a manifold, while the latter are images of paths, i.e., sets of points. In what follows, we will not focus on this.

  4. With assumption that \(\dim\mathfrak{B}=3\). In the case if \(\dim\mathfrak{B}<3\) further reasoning is required.

  5. Usually natural coordinates are listed in the following order: first are coordinates on the base manifold and second are coordinates on the model fiber. However, dealing with body time manifold is is appropriate to use the reverse order, which is consistent with coordinates on Minkowski spacetime (the first coordinate is temporal).

REFERENCES

  1. J. Weingarten, ‘‘Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi,’’ Rom. Acc. L. Rend. (5) 10, 57–60 (1901).

    MATH  Google Scholar 

  2. V. Volterra and E. Volterra, ‘‘Sur les distorsions des corps élastiques (théorie et applications),’’ Mem. Sci. Math. 147, 3–117 (1960).

    MATH  Google Scholar 

  3. J. Frenkel, ‘‘Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper,’’ Zeitschr. Phys. 37, 572–609 (1926).

    Article  MATH  Google Scholar 

  4. M. Polanyi, ‘‘Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte,’’ Zeitschr. Phys. 89, 660–664 (1934).

    Article  Google Scholar 

  5. K. Kondo, ‘‘Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint,’’ in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (Gakujutsu Bunken Fukyu-Kai, Tokyo, 1955), Vol. 1, pp. 6–17.

    MATH  Google Scholar 

  6. K. Kondo, ‘‘Non-Riemannian and Finslerian approaches to the theory of yielding,’’ Int. J. Eng. Sci. 1, 71–88 (1963).

    Article  MATH  Google Scholar 

  7. B. Bilby, R. Bullough, and E. Smith, ‘‘Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry,’’ Proc. R. Soc. London, Ser. A 231, 263–273 (1955).

    Article  MathSciNet  Google Scholar 

  8. E. Kröner, ‘‘Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen,’’ Arch. Ration. Mech. Anal. 4(273) (1959).

  9. W. Noll, ‘‘Materially uniform simple bodies with inhomogeneities,’’ Arch. Ration. Mech. Anal. 27, 1–32 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  10. C. C. Wang, ‘‘On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations,’’ Arch. Ration. Mech. Anal. 27, 33–94 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Rakotomanana, A Geometric Approach to Thermomechanics of Dissipating Continua (Birkhäuser, Boston, 2004).

    Book  MATH  Google Scholar 

  12. M. Epstein and M. Elzanowski, Material Inhomogeneities and their Evolution: A Geometric Approach (Springer Science, New York, 2007).

    MATH  Google Scholar 

  13. P. Steinmann, Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity (Springer, Berlin, 2015).

    Book  MATH  Google Scholar 

  14. S. Lychev and K. Koifman, Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics (De Gruyter, Berlin, 2018).

    Book  MATH  Google Scholar 

  15. M. Miri and N. Rivier, ‘‘Continuum elasticity with topological defects, including dislocations and extra-matter,’’ J. Phys. A 35, 1727–1739 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Yavari and A. Goriely, ‘‘Riemann–Cartan geometry of nonlinear dislocation mechanics,’’ Arch. Ration. Mech. Anal. 205, 59–118 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Yavari and A. Goriely, ‘‘Weyl geometry and the nonlinear mechanics of distributed point defects,’’ Proc. R. Soc. London, Ser. A 468, 3902–3922 (2012).

    MathSciNet  MATH  Google Scholar 

  18. A. Yavari, ‘‘A geometric theory of growth mechanics,’’ J. Nonlin. Sci. 20, 781–830 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Sozio and A. Yavari, ‘‘Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies,’’ J. Mech. Phys. Solids 98, 12–48 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Zurlo and L. Truskinovsky, ‘‘Printing non-Euclidean solids,’’ Phys. Rev. Lett. 119, 048001 (2017).

    Article  Google Scholar 

  21. G. Zurlo and L. Truskinovsky, ‘‘Inelastic surface growth,’’ Mech. Res. Commun. 93, 174–179 (2018).

    Article  Google Scholar 

  22. F. Sozio and A. Yavari, ‘‘Nonlinear mechanics of accretion,’’ J. Nonlin. Sci. 29, 1813–1863 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Lychev, G. Kostin, T. Lycheva, and K. Koifman, ‘‘Non-Euclidean geometry and defected structure for bodies with variable material composition,’’ J. Phys.: Conf. Ser. 1250, 012035 (2019).

    Google Scholar 

  24. S. Lychev and K. Koifman, ‘‘Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell,’’ Acta Mech. 230, 3989–4020 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Shakura and R. Sunyaev, ‘‘Black holes in binary systems: Observational appearances,’’ Proc. IAE Symp. 55, 155–164 (1973).

  26. A. Treves, L. Maraschi, and M. Abramowicz, Accretion: A Collection of Influential Papers (World Scientific, Singapore, 1989).

    Book  Google Scholar 

  27. F. Hoyle and R. Lyttleton, ‘‘The effect of interstellar matter on climatic variation,’’ Proc. Cambridge Philos. Soc. 35(3) (1939).

  28. H. Bondi, ‘‘On spherically symmetrical accretion,’’ Mon. Not. R. Astron. Soc. 112 (1952).

  29. R. Edgar, ‘‘A review of Bondi–Hoyle–Lyttleton accretion,’’ New Astron. Rev. 48, 843–859 (2004).

    Article  Google Scholar 

  30. C. Brown, L. Goodman, and H. Jeffreys, ‘‘Gravitational stresses in accreted bodies,’’ Proc. R. Soc. London, Ser. A 276 (1367), 571–576 (1963).

    Article  MATH  Google Scholar 

  31. M. Rigoselli, S. Mereghetti, R. Turolla, R. Taverna, V. Suleimanov, and A. Potekhin, ‘‘Thermal emission and magnetic beaming in the radio and X-ray mode-switching PSR B0943+10,’’ Astrophys. J. 872, 15 (2019).

    Article  Google Scholar 

  32. A. Danilenko, A. Karpova, D. Ofengeim, Y. Shibanov, and D. Zyuzin, ‘‘XMM-Newton observations of a gamma-ray pulsar J0633+0632: pulsations, cooling and large-scale emission,’’ Mon. Not. R. Astron. Soc. 493, 1874–1887 (2020).

    Article  Google Scholar 

  33. A. Prasanna, ‘‘The role of space-time curvature in the study of plasma processes near neutron stars and black holes,’’ Bull. Astron. Soc. India 6 (88) (1978).

  34. S. Lander, N. Andersson, D. Antonopoulou, and A. Watts, ‘‘Magnetically driven crustquakes in neutron stars,’’ Mon. Not. R. Astron. Soc. 449, 2047–2058 (2015).

    Article  Google Scholar 

  35. H. Silva and N. Yunes, ‘‘Neutron star pulse profiles in scalar-tensor theories of gravity,’’ Phys. Rev. D 99, 044034 (2019).

    Article  MathSciNet  Google Scholar 

  36. M. Born, ‘‘Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips,’’ Ann. Phys. 335 (11), 1–56 (1909).

    Article  MATH  Google Scholar 

  37. M. Born, ‘‘Zur Kinematik des starren Körpers im System des Relativitätsprinzips,’’ Göttinger Nachr. 2, 161–179 (1910).

    MATH  Google Scholar 

  38. G. Herglotz, ‘‘Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie,’’ Ann. Phys. 341, 493–533 (1911).

    Article  MATH  Google Scholar 

  39. J. Synge, ‘‘A theory of elasticity in general relativity,’’ Math. Z. 72, 82–87 (1959).

    Article  MathSciNet  MATH  Google Scholar 

  40. C. Rayner, ‘‘Elasticity in general relativity,’’ Proc. R. Soc. London, Ser. A 272, 44–53 (1963).

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Bennoun, ‘‘Étude des milieux continus élastiques et thermodynamiques en relativité générale,’’ Ann. IHP Phys. Theor. 3 (1), 41–110 (1965).

    MathSciNet  Google Scholar 

  42. H. Schöpf, ‘‘Allgemeinrelativistische Prinzipien der Kontinuumsmechanik,’’ Ann. Phys. 12, 337 (1964).

    MATH  Google Scholar 

  43. J. Ehlers, ‘‘Contributions to the relativistic mechanics of continuous media,’’ Gen. Relat. Gravit. 25, 1225–1266 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Oldroyd, ‘‘Equations of state of continuous matter in general relativity,’’ Proc. R. Soc. London, Ser. A 316, 1–28 (1970).

    Article  MathSciNet  Google Scholar 

  45. W. Hernandez, ‘‘Elasticity theory in general relativity,’’ Phys. Rev. D 1, 1013–1018 (1970).

    Article  MATH  Google Scholar 

  46. B. Carter and H. Quintana, ‘‘Foundations of general relativistic high-pressure elasticity theory,’’ Proc. R. Soc. London, Ser. A 331, 57–83 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Roychowdhury and A. Gupta, ‘‘Non-metric connection and metric anomalies in materially uniform elastic solids,’’ J. Elasticity 126, 1–26 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Lychev and K. Koifman, ‘‘Material affine connections for growing solids,’’ Lobachevskii J. Math. 41, 2034–2052 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Lychev and K. Koifman, ‘‘Contorsion of material connection in growing solids,’’ Lobachevskii J. Math. 42, 1852–1875 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  50. V. Vasiliev and L. Fedorov, ‘‘Relativistic theory of elasticity,’’ Mech. Solids 53, 256–261 (2018).

    Article  Google Scholar 

  51. L. Söderholm, ‘‘A principle of objectivity for relativistic continuum mechanics,’’ Arch. Ration. Mech. Anal. 39, 89–107 (1970).

    Article  MathSciNet  MATH  Google Scholar 

  52. G. Lianis and R. Rivlin, ‘‘Relativistic equations of balance in continuum mechanics,’’ Arch. Ration. Mech. Anal. 48, 64–82 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  53. G. Maugin, ‘‘On the covariant equations of the relativistic electrodynamics of continua. I. General equations,’’ J. Math. Phys. 19, 1198 (1978).

    Article  MATH  Google Scholar 

  54. R. Grot and A. Eringen, ‘‘Relativistic continuum mechanics. Part I – mechanics and thermodynamics,’’ Int. J. Eng. Sci. 4, 611–638 (1966).

    Article  Google Scholar 

  55. G. Maugin, ‘‘On the covariant equations of the relativistic electrodynamics of continua. III. Elastic solids,’’ J. Math. Phys. 19, 1212 (1978).

    Article  MATH  Google Scholar 

  56. G. Maugin and A. Eringen, ‘‘Relativistic continua with directors,’’ J. Math. Phys. 13, 1788–1797 (1972).

    Article  Google Scholar 

  57. J. Synge, Relativity: The Special Theory (Elsevier Science, Amsterdam, 1980).

    MATH  Google Scholar 

  58. E. Gourgoulhon, Special Relativity in General Frames (Springer, Berlin, 2013).

    Book  MATH  Google Scholar 

  59. M. Postnikov, Lectures in Geometry: Analytic Geometry (URSS, Moscow, 1994) [in Russian].

    MATH  Google Scholar 

  60. K. Kuratowski and A. Mostowski, Set Theory (Polish Sci., Warsaw, 1968).

    MATH  Google Scholar 

  61. A. Blass, ‘‘Existence of bases implies the axiom of choice,’’ Contemp. Math. 31, 31–33 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Rumer, Studies in 5-Optics (Tekh.-Theor. Liter., 1956).

    Google Scholar 

  63. R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Vintage Books, 2007).

    MATH  Google Scholar 

  64. W. Noll, ‘‘Euclidean geometry and Minkowskian chronometry,’’ Am. Math. Mon. 71, 129–144 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  65. J. Lee, Introduction to Smooth Manifolds (Springer, New York, 2012).

    Book  Google Scholar 

  66. G. Ferrarese and D. Bini, Introduction to Relativistic Continuum Mechanics (Springer, Berlin, 2008).

    Book  MATH  Google Scholar 

  67. G. Naber, Topology, Geometry and Gauge Fields. Foundations (Springer, New York, 2011).

    Book  MATH  Google Scholar 

  68. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics (Springer Science, New York, 2013), Vol. 2.

    MATH  Google Scholar 

  69. M. Epstein, D. Burton, and R. Tucker, ‘‘Relativistic anelasticity,’’ Class. Quantum Grav. 23, 3545–3571 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  70. J. Marsden and T. Hughes, Mathematical Foundations of Elasticity (Courier Corp., New York, 1994).

    MATH  Google Scholar 

  71. A. Yavari, J. Marsden, and M. Ortiz, ‘‘On spatial and material covariant balance laws in elasticity,’’ J. Math. Phys. 47, 042903 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  72. M. Epstein and M. de Leon, ‘‘Geometrical theory of uniform Cosserat media,’’ J. Geom. Phys. 26, 127–170 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  73. J. Ericksen and C. Truesdell, ‘‘Exact theory of stress and strain in rods and shells,’’ Arch. Ration. Mech. Anal. 1, 295–323 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  74. R. Toupin, ‘‘Theories of elasticity with couple-stress,’’ Arch. Ration. Mech. Anal. 17, 85–112 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  75. S. Lychev, ‘‘On conservation laws of micromorphic nondissipative thermoelasticity,’’ Vestn. Samara Univ., Ser.: Estestv. Nauki 4, 225–262 (2007).

    MathSciNet  MATH  Google Scholar 

  76. S. Chern, W. Chen, and K. Lam, Lectures on Differential Geometry (World Scientific, Singapore, 1999).

    Book  MATH  Google Scholar 

  77. J. Lee, Introduction to Riemannian Manifolds (Springer, Cham, 2018).

    Book  MATH  Google Scholar 

  78. T. Levi-Civita, ‘‘Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana,’’ Rend. Circ. Mat. Palermo 42, 173–204 (1916).

    Article  Google Scholar 

  79. E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

Download references

Funding

The study was partially supported by the Government program (contract #AAAA-A20-120011690132-4) and partially supported by the grant RSF No. 22-21-00457. Russian Science Foundation. https://rscf.ru/en/project/22-21-00457/

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Lychev, K. Koifman or D. Bout.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lychev, S., Koifman, K. & Bout, D. Finite Incompatible Deformations in Elastic Solids: Relativistic Approach. Lobachevskii J Math 43, 1908–1933 (2022). https://doi.org/10.1134/S1995080222100250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100250

Keywords:

Navigation