Abstract
The Lagrangian approach for modeling of relativistic elastic solid with distributed defects is developed. The influence of defects on stress-strain state of the solid is taken into account within differential-geometric framework, which allows to describe the corresponding deformation incompatibility in terms of material connection curvature. The specifity of the developed approach is in four-dimensional relativistic formulation of body-tubes and higher-dimensional formulation for rigged body-tubes represented as total spaces of some principal bundles. This approach makes it possible to account the micropolar and micromorphic behavior of relativistic material particles. The generalized deformation is considered as embedding of a smooth manifold that represents rigged body-time into another smooth manifold that represents rigged space-time. Specific technique for constructing of rigged space-time in terms of fiber bundles is developed. The unified variation formulation is suggested for wide range of micromorphic solids. Particular forms for Lagrangian density aligned with general covariance principle are proposed. The considered approach may be applied for the modelling of accretion processes in large-scaled astrophysical objects.
This is a preview of subscription content,
to check access.
Similar content being viewed by others
Notes
In what follows the conventional designation \(\overrightarrow{{{{a}}}{{{b}}}}\) for the value \(\textrm{vec}({{{a}}},\>{{{b}}})\) will be used. The notation for structure and its underlying set will not be distinguished typographically
The family \((\mathfrak{e}^{\alpha})_{\alpha=0}^{3}\) is basis for \(\mathcal{V}^{\ast}\), dual to \((\boldsymbol{e}_{\alpha})_{\alpha=0}^{3}\).
Note that the curve is given in a special parameterization. From general viewpoint, one can distinguish between paths and curves, where the former are smooth mappings of an real axis interval into a manifold, while the latter are images of paths, i.e., sets of points. In what follows, we will not focus on this.
With assumption that \(\dim\mathfrak{B}=3\). In the case if \(\dim\mathfrak{B}<3\) further reasoning is required.
Usually natural coordinates are listed in the following order: first are coordinates on the base manifold and second are coordinates on the model fiber. However, dealing with body time manifold is is appropriate to use the reverse order, which is consistent with coordinates on Minkowski spacetime (the first coordinate is temporal).
REFERENCES
J. Weingarten, ‘‘Sulle superficie di discontinuità nella teoria della elasticità dei corpi solidi,’’ Rom. Acc. L. Rend. (5) 10, 57–60 (1901).
V. Volterra and E. Volterra, ‘‘Sur les distorsions des corps élastiques (théorie et applications),’’ Mem. Sci. Math. 147, 3–117 (1960).
J. Frenkel, ‘‘Zur Theorie der Elastizitätsgrenze und der Festigkeit kristallinischer Körper,’’ Zeitschr. Phys. 37, 572–609 (1926).
M. Polanyi, ‘‘Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte,’’ Zeitschr. Phys. 89, 660–664 (1934).
K. Kondo, ‘‘Non-Riemannian geometry of imperfect crystals from a macroscopic viewpoint,’’ in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry (Gakujutsu Bunken Fukyu-Kai, Tokyo, 1955), Vol. 1, pp. 6–17.
K. Kondo, ‘‘Non-Riemannian and Finslerian approaches to the theory of yielding,’’ Int. J. Eng. Sci. 1, 71–88 (1963).
B. Bilby, R. Bullough, and E. Smith, ‘‘Continuous distributions of dislocations: A new application of the methods of non-Riemannian geometry,’’ Proc. R. Soc. London, Ser. A 231, 263–273 (1955).
E. Kröner, ‘‘Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen,’’ Arch. Ration. Mech. Anal. 4(273) (1959).
W. Noll, ‘‘Materially uniform simple bodies with inhomogeneities,’’ Arch. Ration. Mech. Anal. 27, 1–32 (1967).
C. C. Wang, ‘‘On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations,’’ Arch. Ration. Mech. Anal. 27, 33–94 (1967).
L. Rakotomanana, A Geometric Approach to Thermomechanics of Dissipating Continua (Birkhäuser, Boston, 2004).
M. Epstein and M. Elzanowski, Material Inhomogeneities and their Evolution: A Geometric Approach (Springer Science, New York, 2007).
P. Steinmann, Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity (Springer, Berlin, 2015).
S. Lychev and K. Koifman, Geometry of Incompatible Deformations: Differential Geometry in Continuum Mechanics (De Gruyter, Berlin, 2018).
M. Miri and N. Rivier, ‘‘Continuum elasticity with topological defects, including dislocations and extra-matter,’’ J. Phys. A 35, 1727–1739 (2002).
A. Yavari and A. Goriely, ‘‘Riemann–Cartan geometry of nonlinear dislocation mechanics,’’ Arch. Ration. Mech. Anal. 205, 59–118 (2012).
A. Yavari and A. Goriely, ‘‘Weyl geometry and the nonlinear mechanics of distributed point defects,’’ Proc. R. Soc. London, Ser. A 468, 3902–3922 (2012).
A. Yavari, ‘‘A geometric theory of growth mechanics,’’ J. Nonlin. Sci. 20, 781–830 (2010).
F. Sozio and A. Yavari, ‘‘Nonlinear mechanics of surface growth for cylindrical and spherical elastic bodies,’’ J. Mech. Phys. Solids 98, 12–48 (2017).
G. Zurlo and L. Truskinovsky, ‘‘Printing non-Euclidean solids,’’ Phys. Rev. Lett. 119, 048001 (2017).
G. Zurlo and L. Truskinovsky, ‘‘Inelastic surface growth,’’ Mech. Res. Commun. 93, 174–179 (2018).
F. Sozio and A. Yavari, ‘‘Nonlinear mechanics of accretion,’’ J. Nonlin. Sci. 29, 1813–1863 (2019).
S. Lychev, G. Kostin, T. Lycheva, and K. Koifman, ‘‘Non-Euclidean geometry and defected structure for bodies with variable material composition,’’ J. Phys.: Conf. Ser. 1250, 012035 (2019).
S. Lychev and K. Koifman, ‘‘Nonlinear evolutionary problem for a laminated inhomogeneous spherical shell,’’ Acta Mech. 230, 3989–4020 (2019).
N. Shakura and R. Sunyaev, ‘‘Black holes in binary systems: Observational appearances,’’ Proc. IAE Symp. 55, 155–164 (1973).
A. Treves, L. Maraschi, and M. Abramowicz, Accretion: A Collection of Influential Papers (World Scientific, Singapore, 1989).
F. Hoyle and R. Lyttleton, ‘‘The effect of interstellar matter on climatic variation,’’ Proc. Cambridge Philos. Soc. 35(3) (1939).
H. Bondi, ‘‘On spherically symmetrical accretion,’’ Mon. Not. R. Astron. Soc. 112 (1952).
R. Edgar, ‘‘A review of Bondi–Hoyle–Lyttleton accretion,’’ New Astron. Rev. 48, 843–859 (2004).
C. Brown, L. Goodman, and H. Jeffreys, ‘‘Gravitational stresses in accreted bodies,’’ Proc. R. Soc. London, Ser. A 276 (1367), 571–576 (1963).
M. Rigoselli, S. Mereghetti, R. Turolla, R. Taverna, V. Suleimanov, and A. Potekhin, ‘‘Thermal emission and magnetic beaming in the radio and X-ray mode-switching PSR B0943+10,’’ Astrophys. J. 872, 15 (2019).
A. Danilenko, A. Karpova, D. Ofengeim, Y. Shibanov, and D. Zyuzin, ‘‘XMM-Newton observations of a gamma-ray pulsar J0633+0632: pulsations, cooling and large-scale emission,’’ Mon. Not. R. Astron. Soc. 493, 1874–1887 (2020).
A. Prasanna, ‘‘The role of space-time curvature in the study of plasma processes near neutron stars and black holes,’’ Bull. Astron. Soc. India 6 (88) (1978).
S. Lander, N. Andersson, D. Antonopoulou, and A. Watts, ‘‘Magnetically driven crustquakes in neutron stars,’’ Mon. Not. R. Astron. Soc. 449, 2047–2058 (2015).
H. Silva and N. Yunes, ‘‘Neutron star pulse profiles in scalar-tensor theories of gravity,’’ Phys. Rev. D 99, 044034 (2019).
M. Born, ‘‘Die Theorie des starren Elektrons in der Kinematik des Relativitätsprinzips,’’ Ann. Phys. 335 (11), 1–56 (1909).
M. Born, ‘‘Zur Kinematik des starren Körpers im System des Relativitätsprinzips,’’ Göttinger Nachr. 2, 161–179 (1910).
G. Herglotz, ‘‘Über die Mechanik des deformierbaren Körpers vom Standpunkte der Relativitätstheorie,’’ Ann. Phys. 341, 493–533 (1911).
J. Synge, ‘‘A theory of elasticity in general relativity,’’ Math. Z. 72, 82–87 (1959).
C. Rayner, ‘‘Elasticity in general relativity,’’ Proc. R. Soc. London, Ser. A 272, 44–53 (1963).
J. Bennoun, ‘‘Étude des milieux continus élastiques et thermodynamiques en relativité générale,’’ Ann. IHP Phys. Theor. 3 (1), 41–110 (1965).
H. Schöpf, ‘‘Allgemeinrelativistische Prinzipien der Kontinuumsmechanik,’’ Ann. Phys. 12, 337 (1964).
J. Ehlers, ‘‘Contributions to the relativistic mechanics of continuous media,’’ Gen. Relat. Gravit. 25, 1225–1266 (1993).
J. Oldroyd, ‘‘Equations of state of continuous matter in general relativity,’’ Proc. R. Soc. London, Ser. A 316, 1–28 (1970).
W. Hernandez, ‘‘Elasticity theory in general relativity,’’ Phys. Rev. D 1, 1013–1018 (1970).
B. Carter and H. Quintana, ‘‘Foundations of general relativistic high-pressure elasticity theory,’’ Proc. R. Soc. London, Ser. A 331, 57–83 (1972).
A. Roychowdhury and A. Gupta, ‘‘Non-metric connection and metric anomalies in materially uniform elastic solids,’’ J. Elasticity 126, 1–26 (2017).
S. Lychev and K. Koifman, ‘‘Material affine connections for growing solids,’’ Lobachevskii J. Math. 41, 2034–2052 (2020).
S. Lychev and K. Koifman, ‘‘Contorsion of material connection in growing solids,’’ Lobachevskii J. Math. 42, 1852–1875 (2021).
V. Vasiliev and L. Fedorov, ‘‘Relativistic theory of elasticity,’’ Mech. Solids 53, 256–261 (2018).
L. Söderholm, ‘‘A principle of objectivity for relativistic continuum mechanics,’’ Arch. Ration. Mech. Anal. 39, 89–107 (1970).
G. Lianis and R. Rivlin, ‘‘Relativistic equations of balance in continuum mechanics,’’ Arch. Ration. Mech. Anal. 48, 64–82 (1972).
G. Maugin, ‘‘On the covariant equations of the relativistic electrodynamics of continua. I. General equations,’’ J. Math. Phys. 19, 1198 (1978).
R. Grot and A. Eringen, ‘‘Relativistic continuum mechanics. Part I – mechanics and thermodynamics,’’ Int. J. Eng. Sci. 4, 611–638 (1966).
G. Maugin, ‘‘On the covariant equations of the relativistic electrodynamics of continua. III. Elastic solids,’’ J. Math. Phys. 19, 1212 (1978).
G. Maugin and A. Eringen, ‘‘Relativistic continua with directors,’’ J. Math. Phys. 13, 1788–1797 (1972).
J. Synge, Relativity: The Special Theory (Elsevier Science, Amsterdam, 1980).
E. Gourgoulhon, Special Relativity in General Frames (Springer, Berlin, 2013).
M. Postnikov, Lectures in Geometry: Analytic Geometry (URSS, Moscow, 1994) [in Russian].
K. Kuratowski and A. Mostowski, Set Theory (Polish Sci., Warsaw, 1968).
A. Blass, ‘‘Existence of bases implies the axiom of choice,’’ Contemp. Math. 31, 31–33 (1984).
Y. Rumer, Studies in 5-Optics (Tekh.-Theor. Liter., 1956).
R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe (Vintage Books, 2007).
W. Noll, ‘‘Euclidean geometry and Minkowskian chronometry,’’ Am. Math. Mon. 71, 129–144 (1964).
J. Lee, Introduction to Smooth Manifolds (Springer, New York, 2012).
G. Ferrarese and D. Bini, Introduction to Relativistic Continuum Mechanics (Springer, Berlin, 2008).
G. Naber, Topology, Geometry and Gauge Fields. Foundations (Springer, New York, 2011).
C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics (Springer Science, New York, 2013), Vol. 2.
M. Epstein, D. Burton, and R. Tucker, ‘‘Relativistic anelasticity,’’ Class. Quantum Grav. 23, 3545–3571 (2006).
J. Marsden and T. Hughes, Mathematical Foundations of Elasticity (Courier Corp., New York, 1994).
A. Yavari, J. Marsden, and M. Ortiz, ‘‘On spatial and material covariant balance laws in elasticity,’’ J. Math. Phys. 47, 042903 (2006).
M. Epstein and M. de Leon, ‘‘Geometrical theory of uniform Cosserat media,’’ J. Geom. Phys. 26, 127–170 (1998).
J. Ericksen and C. Truesdell, ‘‘Exact theory of stress and strain in rods and shells,’’ Arch. Ration. Mech. Anal. 1, 295–323 (1957).
R. Toupin, ‘‘Theories of elasticity with couple-stress,’’ Arch. Ration. Mech. Anal. 17, 85–112 (1964).
S. Lychev, ‘‘On conservation laws of micromorphic nondissipative thermoelasticity,’’ Vestn. Samara Univ., Ser.: Estestv. Nauki 4, 225–262 (2007).
S. Chern, W. Chen, and K. Lam, Lectures on Differential Geometry (World Scientific, Singapore, 1999).
J. Lee, Introduction to Riemannian Manifolds (Springer, Cham, 2018).
T. Levi-Civita, ‘‘Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura Riemanniana,’’ Rend. Circ. Mat. Palermo 42, 173–204 (1916).
E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics (Cambridge Univ. Press, Cambridge, 2004).
Funding
The study was partially supported by the Government program (contract #AAAA-A20-120011690132-4) and partially supported by the grant RSF No. 22-21-00457. Russian Science Foundation. https://rscf.ru/en/project/22-21-00457/
Author information
Authors and Affiliations
Corresponding authors
Additional information
(Submitted by A. M. Elizarov)
Rights and permissions
About this article
Cite this article
Lychev, S., Koifman, K. & Bout, D. Finite Incompatible Deformations in Elastic Solids: Relativistic Approach. Lobachevskii J Math 43, 1908–1933 (2022). https://doi.org/10.1134/S1995080222100250
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1995080222100250