Skip to main content

On the Convective Stability and Pattern Formation of Volumetrically Heated Flows with Asymmetric Boundaries

Abstract

Non-linear solutions and their stability are presented for homogeneously heated fluids bounded by rigid conducting and insulating plates. In particular, we sought roll-type solutions emerging from the neutral stability curve for fluids with Prandtl numbers of 0.025, 0.25, 0.705, and 7. We determined the stability boundaries for the roll states in order to identify possible bifurcation points for the secondary flow in the form of regions that are equivalent to the Busse balloon. We also compared the stability exchange between ‘‘up’’ and ‘‘down’’ hexagons for a Prandtl number of \(0.25\) obtained from weakly non-linear analysis in relation to the fully non-linear analysis, consistent with earlier studies. Our numerical analysis showed that there are potential bistable regions for both hexagons and rolls, a result that requires further investigations with a fully non-linear analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. G. M. Gershuni, E. M. Zhukhovitsky, and A. A. Yakimov, ‘‘On stability of plane-parallel convective motion due to internal heat sources,’’ Int. J. Heat Mass Transf. 17, 717–726 (1974).

    Article  MATH  Google Scholar 

  2. M. Nagata and S. Generalis, ‘‘Transition in convective flows heated internally,’’ J. Heat Transf. 124, 635 (2002).

    Article  MATH  Google Scholar 

  3. S. Generalis and M. Nagata, ‘‘Transition in homogeneously heated inclined plane parallel shear flows,’’ J. Heat Trans. 125, 795 (2003).

    Article  Google Scholar 

  4. G. M. Cartland Glover and S. C. Generalis, ‘‘Pattern competition in homogeneously heated fluid layers,’’ Eng. Appl. Comput. Fluid Mech. 3, 164–174 (2009).

    Google Scholar 

  5. G. M. Cartland Glover, K. Fujimura, and S. C. Generalis, ‘‘Pattern formation in volumetrically heated fluids,’’ Chaos Simul. Modell. Int. J. 2013, 164 (2013).

    Google Scholar 

  6. G. M. Cartland Glover, K. Fujimura, and S. C. Generalis, in Proceedings of the 15th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (Pisa, Italy, 2013), p. 286.

  7. C. R. Carrigan, ‘‘Convection in an internally heated, high Prandtl number fluid. A laboratory study,’’ Geophys. Astrophys. Fluid Dyn. 32, 1–21 (1985).

    Article  Google Scholar 

  8. H. Bénard, ‘‘Les tourbillons cellulaires dans une nappe liquide,’’ Rev. Gen. Sci. Pures Appl. 11, 1271–1309 (1900).

    Google Scholar 

  9. F. H. Busse, ‘‘Non-linear properties of thermal convection,’’ Rep. Prog. Phys. 41, 1929 (1978).

    Article  Google Scholar 

  10. F. H. Busse, ‘‘Remarks on the critical value \(P_{c}=\) 0.25 of the Prandtl number for internally heated convection found by Tveitereid and Palm,’’ Eur. J. Mech. B 47, 32–34 (2014).

    Article  MATH  Google Scholar 

  11. K. E. Daniels, B. B. Plapp, and E. Bodenschatz, ‘‘Pattern formation in inclined layer convection,’’ Phys. Rev. Lett. 84, 5320 (2000).

    Article  Google Scholar 

  12. C. Q. Hoard, C. R. Robertson, and A. Acrivos, ‘‘Experiments on the cellular structure in Bénard convection,’’ Int. J. Heat Mass Transf. 13, 849 (1970).

    Article  Google Scholar 

  13. F. H. Busse, ‘‘The stability of finite amplitude cellular convection and its relation to an extremum principle,’’ J. Fluid Mech. 30, 625 (1967).

    Article  MATH  Google Scholar 

  14. F. H. Busse and J. A. Whitehead, ‘‘Instabilities of convection rolls in a high Prandtl number fluid,’’ J. Fluid Mech. 76, 305 (1971).

    Article  Google Scholar 

  15. R. M. Clever and F. H. Busse, ‘‘Large wavelength convection rolls in low Prandtl number fluids,’’ Zs. Angew. Math. Phys. 29, 711 (1978).

    Article  Google Scholar 

  16. F. H. Busse and R. M. Clever, ‘‘Instabilities of convection rolls in a fluid of moderate Prandtl number,’’ J. Fluid Mech. 91, 319 (1979).

    Article  Google Scholar 

  17. F. H. Busse and E. W. Bolton, ‘‘Stability of convection rolls in a layer with stress-free boundaries,’’ J. Fluid Mech. 146, 115 (1984).

    Article  MATH  Google Scholar 

  18. R. Clever and F. H. Busse, ‘‘Transition to time-dependent convection,’’ J. Fluid Mech. 65, 625 (1974).

    Article  MATH  Google Scholar 

  19. F. A. Kulacki and R. J. Goldstein, ‘‘Thermal convection in a horizontal fluid layer with uniform volumetric energy sources,’’ J. Fluid Mech. 55, 271 (1972).

    Article  Google Scholar 

  20. J. Takahashi, Y. Tasaka, Y. Murai, Y. Takeda, and T. Yanagisawa, ‘‘Experimental study of cell pattern formation induced by internal heat sources in a horizontal fluid layer,’’ Int. J. Heat Mass Transf. 53, 1483 (2010).

    Article  MATH  Google Scholar 

  21. Y. Tasaka, Y. Kudoh, Y. Takeda, and T. Yanagisawa, ‘‘Experimental investigation of natural convection induced by internal heat generation,’’ J. Phys.: Conf. Ser. 14, 168 (2005).

    Google Scholar 

  22. H. Ichikawa, K. Kurita, Y. Yamagishi, and T. Yanagisawa, ‘‘Cell pattern of thermal convection induced by internal heating,’’ Phys. Fluids 18, 038101 (2006).

    Article  Google Scholar 

  23. D. J. Tritton and M. N. Zarraga, ‘‘Convection in horizontal layers with internal heat generation,’’ J. Fluid Mech. 30, 21 (1967).

    Article  Google Scholar 

  24. M. Tveitereid and E. Palm, ‘‘Convection due to internal heat sources,’’ J. Fluid Mech. 76, 481 (1976).

    Article  MATH  Google Scholar 

  25. R. Thirlby, ‘‘Convection in an internally heated layer,’’ J. Fluid Mech. 44, 673 (1970).

    Article  MATH  Google Scholar 

  26. A. Thess and M. Bestehorn, ‘‘Planform selection in Benard-Marangoni convection: L hexagons versus G hexagons,’’ Phys. Rev. E 52, 6358 (1995).

    Article  Google Scholar 

  27. E. W. Schwiderski and H. J. A. Schwab, ‘‘Convection experiments with electrolytically heated fluid layers,’’ J. Fluid Mech. 48, 707 (1971).

    Article  Google Scholar 

  28. P. H. Roberts, ‘‘Convection in horizontal layers with internal heat generation,’’ J. Fluid Mech. 30, 33 (1967).

    Article  Google Scholar 

  29. Y. Tasaka and Y. Takeda, ‘‘Effects of heat source distribution on natural convection induced by internal heating,’’ Int. J. Heat Mass Transf. 48, 1164 (2005).

    Article  MATH  Google Scholar 

  30. V. V. Kolmychkov, O. S. Mazhorova, and O. V. Shcheritsa, ‘‘Numerical study of convection near the stability threshold in a square box with internal heat generation,’’ Phys. Lett. A 377, 2111 (2013).

    Article  MathSciNet  Google Scholar 

  31. Lord Rayleigh, ‘‘On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side,’’ Philos. Mag., Ser. 6 32 (192), 529 (1916).

    Article  MATH  Google Scholar 

  32. J. Boussinesq, ‘‘Sur le pouvoir refroidissant d’un courant liquide ou gazeux,’’ J. Phys. Theor. Appl. 1, 71 (1902).

    Article  MATH  Google Scholar 

  33. S. C. Generalis and F. H. Busse, in Proceedings of the 5th European Thermal-Sciences Conference (Eindhoven, the Netherlands, 2008), p. FCV10.

  34. T. Akinaga, S. C. Generalis, and F. H. Busse,‘‘Tertiary and quaternary states in the Taylor-Couette system,’’ Chaos Solitons Fractals 109, 107 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work presented here was funded by a Marie-Curie Intra-European Fellowship (Contract no. 274367) of the European Commission’s FP7 People Programme (GCG). We are grateful for the support of a visiting Professorship by the Leverhulme Trust, which resulted in many fruitful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Cartland Glover, S. C. Generalis or E. C. Aifantis.

Additional information

(Submitted by A. M. Elizarov)

APPENDIX

APPENDIX

In this Appendix data are presented, by plotting the amplitudes for hexagonal and roll states as the conductive laminar fluid state bifurcates to convective fluid states. Figures 916 support Fig. 6 of the main paper. The meaning of the various curves for the hexagons and rolls is as follows: thick lines—‘‘down’’ hexagons; long dashed lines—‘‘up’’ hexagons; short dashed lines—rolls.

Fig. 9
figure 9

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=0.025\). Amplitudes are indicated by \(\ell^{2}_{\textrm{norm}}\).

Fig. 10
figure 10

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=0.250\). Amplitudes are indicated by \(\ell^{2}_{\textrm{norm}}\).

Fig. 11
figure 11

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=0.255\). Amplitudes are indicated by \(\ell^{2}_{\textrm{norm}}\).

Fig. 12
figure 12

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=0.260\). Amplitudes are indicated by \(\ell^{2}_{\textrm{norm}}\).

Fig. 13
figure 13

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=0.270\). Amplitudes are indicated by \(\ell^{2}_{norm}\).

Fig. 14
figure 14

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=0.310\). Amplitudes indicated by \(\ell^{2}_{\textrm{norm}}\).

Fig. 15
figure 15

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=0.705\). Amplitudes indicated by \(\ell^{2}_{\textrm{norm}}\).

Fig. 16
figure 16

Sequences of hexagonal and roll convections beyond the critical transition at \(Pr=7.000\). Amplitudes indicated by \(\ell^{2}_{\textrm{norm}}\).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cartland Glover, G., Generalis, S.C. & Aifantis, E.C. On the Convective Stability and Pattern Formation of Volumetrically Heated Flows with Asymmetric Boundaries. Lobachevskii J Math 43, 1850–1865 (2022). https://doi.org/10.1134/S1995080222100122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100122

Keywords:

  • incompressible flow
  • bifurcation theory
  • homotopy method
  • stability
  • nonlinearity