Skip to main content
Log in

Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Non-linear bending and stability of the clamped prolate semi-ellipsoidal domes with different wall thickness under uniform external pressure and temperature change are considered. The whole analysis is performed numerically using combination of the successive approximation method, linearization and orthogonal sweep methods. Unsymmetrical critical pressure is examined at cryogenic and elevated temperatures taking into account dependence of material characteristics on the temperature. The bifurcation loads with number of circumferential waves are determined. We find that the non-axisymmetrical critical loads for all considered domes are larger at cryogenic temperatures and decrease at higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. C. T. Ross, B. H. Huat, T. B. Chei, C. M. Chong, and M. D. Mackney, ‘‘The buckling of GRP hemi-ellipsoidal dome shells under external hydrostatic pressure,’’ Ocean Eng. 30, 691–705 (2003).

    Article  Google Scholar 

  2. M. P. Nemeth, R. D. Young, T. J. Collins, and J. H. Starnes, Jr., ‘‘Effects of initial geometric imperfections on the non-linear response of the Space Shuttle superlightweight liquid-oxygen tank,’’ Int. J. Non-Lin. Mech. 37, 723–744 (2002).

    MATH  Google Scholar 

  3. Kh. M. Mushtari and K. Z. Galimov, Nonlinear Theory of Thin Elastic Shells (NSF-NASA, Washington, 1961).

    Google Scholar 

  4. M. S. Ganeeva, Strength and Stability of Shells of Revolution (Nauka, Moscow, 1992) [in Russian].

    MATH  Google Scholar 

  5. D. J. Hyman and J. J. Healey, ‘‘Buckling of prolate spheroidal shells under hydrostatic pressure,’’ AIAA J. 5, 1469–1477 (1967).

    Article  Google Scholar 

  6. S. N. Kryvoshapko, ‘‘Research on general and axisymmetric ellipsoidal shells used as domes, pressure vessels, and tanks,’’ Appl. Mech. Rev. 60, 336–355 (2007).

    Article  Google Scholar 

  7. P. Smith and J. Błachut, ‘‘Buckling of externally pressurized prolate ellipsoidal domes,’’ J. Press. Vessel. Technol. 130, 111210-1–111210-9 (2008).

    Article  Google Scholar 

  8. B. Zhu, F. Wang, W. Tang, W. Wang, and M. Zhang, ‘‘Buckling of prolate egg-shaped domes under hydrostatic external pressure,’’ Thin Wall Struct. 119, 296–303 (2017).

    Article  Google Scholar 

  9. A. D. Kovalenko, Basics of Thermoelasticity (Nauk. Dumka, Kiev, 1970) [in Russian].

    Google Scholar 

  10. E. A. Thornton, ‘‘Thermal buckling of plates and shells,’’ Appl. Mech. Rev. 46, 485–506 (1993).

    Article  Google Scholar 

  11. M. S. Ganeeva, ‘‘Temperature problem in geometrically and physically nonlinear theory of non-thin and thin shells,’’ Available from VINITI № 4459–85 (Kazan, 1985).

  12. J. Marcinowski, ‘‘Large deflections of shells subjected to an external load and temperature changes,’’ Int. J. Solids Struct. 34, 765–768 (1997).

    Article  Google Scholar 

  13. M. R. Eslami, H. R. Ghorbani, and M. Shakeri, ‘‘Thermoelastic buckling of thin spherical shells,’’ J. Therm. Stresses 24, 1177–1198 (2001).

    Article  Google Scholar 

  14. C. Li, Y. Miao, H. Wang, and Q. Feng, ‘‘Thermal buckling of thin spherical shells under uniform external pressure and non-linear temperature,’’ Thin Wall. Struct. 119, 782–794 (2017).

    Article  Google Scholar 

  15. M. S. Ganeeva, V. E. Moiseeva, and Z. V. Skvortsova, ‘‘Large deflections and stability of spherical segment under thermal and force loading,’’ Lobahevskii J. Math. 40, 734–739 (2019).

    Article  MathSciNet  Google Scholar 

  16. V. E. Moiseeva and Z. V. Skvortsova, ‘‘Stress-strain state analysis of oblate ellipsoidal shells under external pressure loading and temperature,’’ Lobachevskii J. Math. 42, 2179–2185 (2021).

    Article  Google Scholar 

  17. A. A. Il’yushin, Plasticity. Part I. Elastic-Plastic Deformation (Gostekhteorizdat, Moscow, 1948) [in Russian].

    Google Scholar 

  18. M. S. Ganeeva and V. E. Moiseeva, ‘‘Nonlinear bending of non-thin components shells of revolution made of thermosensitive elastic-plastic material,’’ in Proceedings of the Seminar on Studies on Shell Theory (KFTI KazNC RAS, Kazan, 1990), No. 25, pp. 4–20.

  19. N. I. Bezuhov, V. L. Bazhanov, I. I. Gol’denblatt, N. A. Nikolaenko, and A. M. Sinyukov, The Calculations for Strength, Stability and Oscillations in High Temperature Conditions (Mashinostroenie, Moscow, 1965) [in Russian].

    Google Scholar 

  20. Yu. P. Solntsev, B. S. Ermakov, and O. I. Sleptsov, Materials for Low and Cryogenic Temperatures. Encyclopedic Reference Book (Khimizdat, St. Petersburg, 2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. E. Moiseeva or Z. V. Skvortsova.

Additional information

(Submitted by D. A. Gubaidullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moiseeva, V.E., Skvortsova, Z.V. Nonlinear Bending and Stability of Prolate Semi-Ellipsoidal Shells under External Pressure and Temperature. Lobachevskii J Math 43, 1159–1164 (2022). https://doi.org/10.1134/S1995080222080224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222080224

Keywords:

Navigation