Skip to main content
Log in

Reflection and Transmission of Pressure Pulses Through a Gas Hydrate-Saturated Layer in a Porous Medium

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The process of transmission and reflection of elastic waves in a porous medium at the boundaries of a section containing gas hydrate is numerically investigated. A two-velocity model of a porous medium is used for calculations, while the skeleton is considered to consist of grains cemented with gas hydrate and is modeled by a homogeneous solid phase with effective parameters. The elastic moduli of the composite skeleton of a porous medium is calculated from the known moduli of the grain material and hydrate. The influence of hydrate saturation, the duration of the initial pulse and the length of the hydrate-containing layer on the characteristics of the transmission and reflection of pulse waves has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. B. Vogelaar and D. Smeulders, ‘‘Extension of White’s layered model to the full frequency range,’’ Geophys. Prospect. 55, 685–695 (2007).

    Article  Google Scholar 

  2. A. M. Kudarova, K. N. van Dalen, and G. G. Drijkoningen, ‘‘Effective poroelastic model for one-dimensional wave propagation in periodically layered media,’’ Geophys. J. Int. 195, 1337–1350 (2013).

    Article  Google Scholar 

  3. D. A. Alexandrov, A. V. Bakulin, and B. M. Kashtan, ‘‘Propagation of low-frequency tube waves in radially layered permeable media,’’ Vopr. Geofiz. 44, 34–48 (2011).

    Google Scholar 

  4. S. I. Fomenko and E. V. Glushkov, ‘‘Numerical and analytical modeling of wave fields in porous-elastic layered media,’’ Available from VINITI, No. 3-A2006 (2006).

  5. L. A. Molotkov, Investigation of Wave Propagation in Porous and Fractured Media Based on Effective Models of Bio and Layered Media (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  6. L. A. Molotkov, ‘‘Wave propagation in an isolated porous Bio layer with closed pores at the boundaries,’’ Zap. Nauch. Semin. POMI 354, 173–189 (2008).

    Google Scholar 

  7. A. A. Gubaidullin, O. Yu. Boldyreva, and D. N. Dudko, ‘‘Elastic waves in a porous medium with layers of different permeabilities,’’ Lobachevskii J. Math. 42, 1977–1981 (2021).

    Article  MathSciNet  Google Scholar 

  8. A. A. Gubaidullin, O. Yu. Boldyreva, and D. N. Dudko, ‘‘Wave propagation in a porous medium saturated with gas hydrate or ice,’’ Vestn. Novosib. Univ. 12 (4), 49–53 (2012).

    MATH  Google Scholar 

  9. A. A. Gubaidullin, O. Yu. Boldyreva, and D. N. Dudko, ‘‘Waves in porous media containing gas hydrate,’’ AIP Conf. Proc. 1939, 020031 (2018). https://doi.org/10.1063/1.5027343

    Article  Google Scholar 

  10. A. A. Gubaidullin and O. Yu. Boldyreva, ‘‘Waves in a porous medium with a gas hydrate containing layer,’’ J. Appl. Mech. Tech. Phys. 61, 525–531 (2020). https://doi.org/10.1134/S0021894420040045

    Article  MathSciNet  MATH  Google Scholar 

  11. A. A. Gubaidullin, O. Yu. Boldyreva, and D. N. Dudko, ‘‘Velocity and attenuation of linear waves in porous media saturated with gas and its hydrate,’’ J. Appl. Mech. Tech. Phys. 63 (3) (2022, in press).

  12. A. A. Gubaidullin, O. Yu. Boldyreva, and D. N. Dudko, ‘‘Elastic properties of porous media containing gas hydrates,’’ Russ. J. Cybern. 2 (2), 82–89 (2021).https://doi.org/10.51790/2712-9942-2021-2-2-7

    Article  Google Scholar 

  13. J. Dvorkin, A. Nur, and H. Yin, ‘‘Effective properties of cemented granular materials,’’ Mech. Mater. 18, 351–366 (1994).

    Article  Google Scholar 

  14. J. Dvorkin and A. Nur, ‘‘Elasticity of high-porosity sandstones: Theory for two North Sea data sets,’’ Geophysics 61, 1363–1370 (1996).

    Article  Google Scholar 

  15. R. I. Nigmatulin, Dynamics of Multiphase Media, Part 1 (Hemisphere, New York, 1990).

    Google Scholar 

  16. G. A. Dugarov, A. A. Duchkov, A. D. Duchkov, and A. N. Drobchik, ‘‘Laboratory validation of effective acoustic velocity models for samples bearing hydrates of different type,’’ J. Nat. Gas Sci. Eng. 63, 38–46 (2019). https://doi.org/10.1016/j.jngse.2019.01.007

    Article  Google Scholar 

Download references

Funding

The research was funded by RFBR and Tyumen Region, project number 20-41-720003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Gubaidullin, O. Yu. Boldyreva or D. N. Dudko.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, A.A., Boldyreva, O.Y. & Dudko, D.N. Reflection and Transmission of Pressure Pulses Through a Gas Hydrate-Saturated Layer in a Porous Medium. Lobachevskii J Math 43, 1064–1068 (2022). https://doi.org/10.1134/S1995080222080108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222080108

Keywords:

Navigation