Skip to main content
Log in

On Approximation of Functions on the Half-Line by Laguerre Polynomials and Functions

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we define a parametric scale of non-uniformly Laguerre-weighted Sobolev spaces and a scale of spaces isometric to it. The second scale includes the ordinary (non-weighted) Sobolev space. Approximations by generalized Laguerre polynomials and functions in these spaces are studied. Some weighted \(L^{2}\)-analogues of Bernstein’s inequality for these polynomials and functions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If the domain of definition of functions coincides with \({{R}_{+}}\), then further we will not indicate it in the notation of the space of functions. So \(L^{2}_{\omega_{\alpha}}\), \({H}^{s}_{m}\) is short for \(L^{2}_{\omega_{\alpha}}({{R}_{+}})\), \({H}^{s}_{m}({{R}_{+}})\).

REFERENCES

  1. D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications (SIAM-CBMS, Philadelphia, 1977).

    Book  Google Scholar 

  2. C. Bernardi and Y. Maday, ‘‘Spectral method,’’ in Handbook of Numerical Analysis, Ed. by P. G. Ciarlet and L. L. Lions (North-Holland, Amsterdam, 1997), Vol. 5, Part 2.

    Google Scholar 

  3. C. Canuto, M. Y. Hussaini, A. Quarteronia, and T. A. Zang, Spectral Methods in Fluid Dynamics (Springer, New York, 1987).

    Google Scholar 

  4. C. Schwab, p- and hp- Finite Element Methods: Theory and Applications to Solid and Fluid Mechanics (Oxford Univ. Press, Oxford, 1999).

  5. D. Funaro Polynomial Approximations of Differential Equations (Springer, Berlin, 1992).

    Book  Google Scholar 

  6. J. Shen and T. Tang, Spectral and High-Order Methods with Applications (Science Press of China, Beijing, 2006).

    MATH  Google Scholar 

  7. M. R. Dorr, ‘‘The approximation theory for the \(p\)-version of the finite element method,’’ SIAM J. Numer. Anal. 21, 1180–1207 (1984).

    Article  MathSciNet  Google Scholar 

  8. S. Nicaise, ‘‘Jacobi polynomials, weighted Sobolev spaces and approximation results of some singularities,’’ Math. Nachr. 213, 117–140 (2000).

    Article  MathSciNet  Google Scholar 

  9. B.-Y. Guo and L.-L. Wang, ‘‘Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces,’’ J. Approx. Theory 128, 1–41 (2004).

    Article  MathSciNet  Google Scholar 

  10. J. Shen and L.-L. Wang, ‘‘Some recent advances on spectral methods for unbounded domains,’’ Commun. Comput. Phys. 5, 195–241 (2009).

    MathSciNet  MATH  Google Scholar 

  11. R. Z. Dautov, ‘‘A sharp error estimate of the best approximation by algebraic polynomials in the weighted space \(L_{2}(-1,1)\),’’ Russ. Math. 57 (5), 51–53 (2013).

    Article  Google Scholar 

  12. R. Z. Dautov and M. R. Timerbaev, ‘‘Sharp estimates for the polynomial approximation in weighted Sobolev spaces,’’ Differ. Equat. 51, 886–894 (2015).

    Article  MathSciNet  Google Scholar 

  13. C. Canuto and A. Quarteroni, ‘‘Approximation results for orthogonal polynomials in Sobolev spaces,’’ Math. Comput. 38, 67–86 (1982).

    Article  MathSciNet  Google Scholar 

  14. Y. Maday, ‘‘Analysis of spectral projectors in one-dimensional domains,’’ Math. Comput. 55 (192), 537–562 (1990).

    Article  MathSciNet  Google Scholar 

  15. C. Bernardi and Y. Maday, ‘‘Polynomial interpolation results in Sobolev spaces,’’ J. Comput. Appl. Mat. 43, 53–80 (1992).

    Article  MathSciNet  Google Scholar 

  16. A. Guessab and G. V. Milovanović, ‘‘Weighted L2-analogues of Bernstein’s inequality and classical orthogonal polynomials,’’ J. Math. Anal. Appl. 182, 244–249 (1994).

    Article  MathSciNet  Google Scholar 

  17. G. Szego, Orthogonal Polynomials, 4th ed., Vol. 23 of Amer. Math. Soc. Collog. Publ. (Amer. Math. Soc., Providence, RI, 1975).

  18. R. Courant and D. Hilbert, Methods of Mathematical Physics (OGIZ, Moscow, 1933), Vol. 1 [in Russian].

    MATH  Google Scholar 

  19. L. D. Kudryavtsev, ‘‘Equivalent Norms in weighted spaces,’’ in Studies in the Theory of Differential Functions of Several Variables and its Applications, Tr. Mat. Inst. Steklov 170, 161–190 (1984).

Download references

ACKNOWLEDGMENTS

The author is grateful to E.M. Karchevskii for critical remarks and useful discussion.

Funding

This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (PRIORITY-2030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Dautov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dautov, R.Z. On Approximation of Functions on the Half-Line by Laguerre Polynomials and Functions. Lobachevskii J Math 43, 935–947 (2022). https://doi.org/10.1134/S1995080222070071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222070071

Keywords:

Navigation