Skip to main content
Log in

On the Solvability of the Burgers Equation with Dynamic Boundary Conditions in a Degenerating Domain

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, the well-posedness of the boundary value problem for the Burgers equation with dynamic boundary conditions is studied in Sobolev spaces with a degenerating domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Benia and B. K. Sadallah, ‘‘Existence of solutions to Burgers equations in domains that can be transformed into rectangles,’’ Electron. J. Differ. Equat. 157, 1–13 (2016).

    MathSciNet  MATH  Google Scholar 

  2. Y. Benia and B. K. Sadallah, ‘‘Existence of solutions to Burgers equations in a non-parabolic domain,’’ Electron. J. Differ. Equat. 20, 1–13 (2018).

    MathSciNet  MATH  Google Scholar 

  3. J. M. Burgers, The Nonlinear Diffusion Equation. Asymptotic Solutions and Statistical Problems (D. Reidel, Dordrecht, 1974)

    Book  Google Scholar 

  4. M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Vol. 9 of Mathematics and Its Applications (Soviet Series) (Nauka, Moscow, 1980; Springer, Berlin, 1988).

  5. V. A. Solonnikov and A. Fasano, ‘‘One-dimensional parabolic problem arising in the study of some free boundary problems,’’ Zap. Nauch. Sem. LOMI 269, 322–338 (2000).

    MATH  Google Scholar 

  6. E. I. Kim, V. T. Omelchenko, and S. N. Kharin, Mathematical Models of Thermal Processes in Electrical Contacts (Gylym, Alma-Ata, 1977) [in Russian].

    Google Scholar 

  7. Yu. A. Mitropolsky, A. A. Berezovsky, and T. A. Plotnitskiy, ‘‘Problems with free boundaries for the nonlinear evolution equation in metallurgy, medicine, and ecology,’’ Ukr. Math. J. 44, 59–67 (1992).

    Article  MathSciNet  Google Scholar 

  8. N. N. Verigin, ‘‘On one class of hydromechanical problems for domains with moving boundaries,’’ Dinam. Splosh. Sredy 46, 23–32 (1980).

    MathSciNet  MATH  Google Scholar 

  9. E. M. Kartashov, ‘‘The problem of heat stroke in a domain with a moving boundary based on new integral relations,’’ Izv. Akad. Nauk, Energet. 4, 122–137 (1997).

    Google Scholar 

  10. T. K. Yuldashev, ‘‘Nonlinear optimal control of thermal processes in a nonlinear inverse problem,’’ Lobachevskii J. Math. 41, 124–136 (2020).

    Article  MathSciNet  Google Scholar 

  11. O. V. Solonukha, ‘‘The first boundary value problem for quasilinear parabolic differential-difference equations,’’ Lobachevskii J. Math. 42, 1067–1077 (2021).

    Article  MathSciNet  Google Scholar 

  12. Kh. R. Mamedov, ‘‘An initial boundary value problem for a mixed type equation in a rectangular domain,’’ Lobachevskii J. Math. 42, 572–578 (2021).

    Article  MathSciNet  Google Scholar 

  13. T. K. Yuldashev and O. Kh. Abdullaev, ‘‘Unique solvability of a boundary value problem for a loaded fractional parabolic-hyperbolic equation with nonlinear terms,’’ Lobachevskii J. Math. 42, 1113–1123 (2021).

    Article  MathSciNet  Google Scholar 

  14. T. K. Yuldashev, B. I. Islomov, and E. K. Alikulov, ‘‘Boundary-value problems for loaded third-order parabolic-hyperbolic equations in infinite three-dimensional domains,’’ Lobachevskii J. Math. 41, 926–944 (2020).

    Article  MathSciNet  Google Scholar 

  15. M. M. Amangaliyeva, M. T. Jenaliyev, M. T. Kosmakova, and M. I. Ramazanov, ‘‘About Dirichlet boundary value problem for the heat equation in the infinite angular domain,’’ Bound. Value Probl. 213, 1–21 (2014).

    MathSciNet  MATH  Google Scholar 

  16. M. M. Amangaliyeva, M. T. Jenaliyev, M. T. Kosmakova, and M. I. Ramazanov, ‘‘On one homogeneous problem for the heat equation in an infinite angular domain,’’ Sib. Math. J. 56, 982–995 (2015).

    Article  MathSciNet  Google Scholar 

  17. M. M. Amangaliyeva, M. T. Jenaliyev, M. I. Ramazanov, and S. A. Iskakov, ‘‘On a boundary value problem for the heat equation and a singular integral equation associated with it,’’ Appl. Math. Comput. 399, 126009 (2021).

    MathSciNet  MATH  Google Scholar 

  18. J. L. Lions and E. Magenes, Problemes aux limites non homogenes et applications (Dunod, Paris, 1968), Vol. 1.

    MATH  Google Scholar 

  19. F. Riesz and Bela Sz. Nagy, Lecons d’Analyse Fonctionelle (Akademiai Kiado, Budapest, 1972).

    Google Scholar 

  20. R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed. (Elsevier, Amsterdam, 2003).

    MATH  Google Scholar 

  21. F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems (AMS Chelsea, Providence, RI, 2002).

    Book  Google Scholar 

Download references

Funding

This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grants No. AP08855372, 2020-2022; AP08956033 2020–2021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. T. Jenaliyev, A. A. Assetov or M. G. Yergaliyev.

Additional information

(Submitted by T. K. Yuldashev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenaliyev, M.T., Assetov, A.A. & Yergaliyev, M.G. On the Solvability of the Burgers Equation with Dynamic Boundary Conditions in a Degenerating Domain. Lobachevskii J Math 42, 3661–3674 (2021). https://doi.org/10.1134/S199508022203012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022203012X

Keywords:

Navigation