Skip to main content
Log in

Stability in the Critical Case and Bifurcations in Impulsive Systems

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

A one-parameter periodic impulsive system of the second order is considered. The conditions for the appearance of the generic Andronov–Hopf bifurcation are discussed. It is shown that this bifurcation leads to the appearance of an almost periodic solution, the trajectory of which completely fills a certain annular region surrounding the rest point. Explicit formulas are also obtained that make it possible to calculate the numerical characteristic of the stability of an impulsive system in the critical case of a pair of complex conjugate multipliers of the monodromy matrix of the linear approximation in the vicinity of the rest point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. C. Panetta, ‘‘A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competition environment,’’ Bull. Math. Biol. 58, 425–447 (1996).

    Article  Google Scholar 

  2. A. Lakmeche and O. Arino, ‘‘Bifurcation of nontrivial periodic solutions of impulsive differential equations arising from chemotherapeutic treatment,’’ Dyn. Control Discrete Impl. Syst. 7, 265–288 (2000).

    MATH  Google Scholar 

  3. A. Lakmeche and O. Arino, ‘‘Nonlinear mathematical model of pulsed-therapy of heterogeneous tumors,’’ Nonlin. Anal. Real World Appl. 2, 455–465 (2001).

    Article  MathSciNet  Google Scholar 

  4. G. Jiang and Q. Yang, ‘‘Bifurcation analysis in an SIR epidemic model with birth pulse and pulse vaccination,’’ Appl. Math. Comput. 215, 1035–1046 (2009).

    MathSciNet  MATH  Google Scholar 

  5. A. Boudermine, M. Helal, and A. Lakmeche, ‘‘Bifurcation of nontrivial periodic solutions for pulsed chemotherapy model,’’ Math. Sci. Appl. E-Notes 2 (2), 22–44 (2014).

    MATH  Google Scholar 

  6. M. Bachar, J. G. Raimann, and P. Kotanko, ‘‘Impulsive mathematical modeling of ascorbic acid metabolism in healthy subjects,’’ J. Theor. Biol. 392, 35–47 (2016).

    Article  MathSciNet  Google Scholar 

  7. Y. Xie, L. Wang, Q. Deng, and Z. Wu, ‘‘The dynamics of an impulsive predator-prey model with communicable disease in the prey species only,’’ Appl. Math. Comput. 292, 320–335 (2017).

    MathSciNet  MATH  Google Scholar 

  8. A. M. Samoilenko and M. O. Perestyuk, Impulsive Differential Equations, Vol. 14 of World Scientific Series on Nonlinear Science, Series A (Vysha Shkola, Kyev, 1987; World Scientific, River Edge, 1995).

  9. A. M. Samoilenko and M. O. Perestyuk, Impulsive Differential Equations (World Scientific, River Edge, 1995).

    Book  Google Scholar 

  10. D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations: Periodic Solutions and Applications (Longman, Harlow, 1993).

    MATH  Google Scholar 

  11. G. T. Stamov, Almost Periodic Solutions of Impulsive Differential Equations (Springer, Heidelberg, New York, 2012).

    Book  Google Scholar 

  12. S. G. Hristova, Qualitative Investigations and Approximate Methods for Impulsive Equations (Nova Science, New York, 2009).

    Google Scholar 

  13. W. M. Haddad, V. Chellabona, and S. G. Nersesov, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control (Princeton Univ. Press, Princeton, 2006).

    Book  Google Scholar 

  14. M. U. Akhmet, ‘‘Perturbations and Hopf bifurcation of the planar discontinuous dynamical system,’’ Nonlin. Anal.: TMA 60, 163–178 (2005).

    Article  MathSciNet  Google Scholar 

  15. M. Akhmet, Principles of Discontinuous Dynamical Systems (Springer, New York, 2010).

    Book  Google Scholar 

  16. K. E. M. Church and Xinzhi Liu, ‘‘Bifurcation analysis and application for impulsive systems with delayed impulses,’’ Int. J. Bifurc. Chaos 27, 1750186 (2017).

    Article  MathSciNet  Google Scholar 

  17. K. Church, ‘‘Invariant manifold theory for impulsive functional differential equations with applications,’’ Ph.D. Thesis (Univ. of Waterloo, 2019).

  18. K. E. M. Church and X. Liu, Bifurcation Theory of Impulsive Dynamical Systems, Vol. 34 of IFSR International Series in Systems Science and Systems Engineering (Springer Nature, Cham, 2021).

  19. Z. Hu and M. Han, ‘‘Periodic solutions and bifurcations of first-order periodic impulsive differential equations,’’ Int. J. Bifurc. Chaos 19, 2515–2530 (2009).

    Article  MathSciNet  Google Scholar 

  20. O. V. Anashkin, N. O. Sedova, and O. V. Yusupova, ‘‘Bifurcations of periodic solutions of a differential equation with impulse action,’’ Dinam. Sist. 7 (35), 395–403 (2017).

    MATH  Google Scholar 

  21. O. Anashkin, ‘‘Bifurcations of solutions of impulsive differential equations,’’ in Proceedings of the 2018 14th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) STAB (2018), pp. 1–3. doi 10.1109/STAB.2018.8408341

  22. O. Anashkin and O. Yusupova, ‘‘Sufficient conditions for stability of the equilibrium position of an impulsive system,’’ in Proceedings of the 2020 15th International Conference on Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy’s Conference) STAB (2020), pp. 1–4. doi 10.1109/STAB49150.2020.9140587

  23. S. V. Babenko and V. I. Slyn’ko, ‘‘Stability of motion of nonlinear systems with impulsive action of the second order in critical cases,’’ Dopov. Nats. Akad. Nauk Ukr., No. 6, 46–52 (2008).

  24. Yu. A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd ed., Vol. 112 of Applied Mathematical Sciences (Springer, New York, 2004), p. 631.

  25. Y.-H. Wan, ‘‘Computations of the stability condition for the Hopf bifurcation of diffeomorphisms on \(\mathbb{R}^{2}\),’’ SIAM J. Appl. Math. 34, 167–175 (1978).

    Article  MathSciNet  Google Scholar 

  26. M. Akhmet and A. Kashkynbayev, Bifurcation in Autonomous and Nonautonomous Differential Equations with Discontinuities (Springer Nature, Higher Education Press, Singapore, 2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Anashkin or O. V. Yusupova.

Additional information

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anashkin, O.V., Yusupova, O.V. Stability in the Critical Case and Bifurcations in Impulsive Systems. Lobachevskii J Math 42, 3574–3583 (2021). https://doi.org/10.1134/S1995080222030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222030039

Keywords:

Navigation