Skip to main content
Log in

Negative Binomial–Lindley Cure Rate Model

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper propose a new cure rate survival model named the negative binomial–Lindley cure rate model by assuming that the number of competing causes of the event of interest follows the negative binomial distribution, and that the time to the event of interest has a Lindley distribution. The new model includes some cure rate models as special cases. Further, the cure rate regression model, which includes covariate information and parameters estimation for the proposed models are derived. In addition, this work also proposes the negative binomial–Lindley distribution as a new mixted lifetime distribution which is derived from the new cure rate survival model. Random variable generation and parameter estimation of the negative binomial–Lindley distribution are obtained. We illustrate the usefulness of the proposed cure rate survival model with covariate information for analysis of a real medical dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. F. J. Anscombe, ‘‘Estimating a mixed-exponential response law,’’ J. Am. Stat. Assoc. 56, 493–502 (1961).

    Article  MathSciNet  Google Scholar 

  2. R. G. Broadhurst and R. A. Maller, ‘‘Estimating the numbers of prison terms in criminal careers from one-step probabilities of recidivism,’’ J. Quant. Criminol. Meth. 7, 275–290 (1991).

    Article  Google Scholar 

  3. V. T. Farewell, ‘‘A model for a binary variable with time-censored observations,’’ Biometrika 64, 43–46 (1977).

    Article  Google Scholar 

  4. A. I. Goldman, ‘‘Survivorship analysis when cure is a possibility: A Monte Carlo study,’’ Stat. Med. 3, 153–163 (1984).

    Article  Google Scholar 

  5. W. Q. Meeker and L. A. Escobar, Statistical Methods for Reliability Data (Wiley, New York, 1998).

    MATH  Google Scholar 

  6. J. W. Boag, ‘‘Maximum likelihood estimates of the proportion of patients cured by cancer therapy,’’ J. R. Stat. Soc. B: Stat. Meth. 11, 15–53 (1949).

    MATH  Google Scholar 

  7. J. Berkson and R. P. Gage, ‘‘Survival curve for cancer patients following treatment,’’ J. Am. Stat. Assoc. 47, 501–515 (1952).

    Article  Google Scholar 

  8. J. G. Ibrahim, M. H. Chen, and D. Sinha, ‘‘Bayesian semiparametric models for survival data with a cure fraction,’’ Biometrika 57, 383–388 (2001).

    Article  MathSciNet  Google Scholar 

  9. A. D. Tsodikov, J. G. Ibrahim, and A. Y. Yakovlev, ‘‘Estimating cure rates from survival data: An alternative to two-component mixture models,’’ J. Am. Stat. Assoc. 98, 1063–1078 (2003).

    Article  MathSciNet  Google Scholar 

  10. F. Cooner, S. Banerjee, B. P. Carlin, and D. Sinha, ‘‘Flexible cure rate modeling under latent activation schemes,’’ J. Am. Stat. Assoc. 102, 560–572 (2007).

    Article  MathSciNet  Google Scholar 

  11. J. Rodrigues, V. G. Cancho, M. de Castro, and F. Louzada-Neto, ‘‘On the unification of long-term survival models,’’ Stat. Probab. Lett. 79, 753–759 (2009).

    Article  MathSciNet  Google Scholar 

  12. M. H. Chen, J. G. Ibrahim, and D. Sinha, ‘‘A new Bayesian model for survival data with a surviving fraction,’’ J. Am. Stat. Assoc. 94, 909–919 (1999).

    Article  MathSciNet  Google Scholar 

  13. W. Feller, An Introduction to Probability Theory and its Applications (Wiley India, New Delhi, 1968).

    MATH  Google Scholar 

  14. M. de Castro, V. G. Cancho, and J. Rodrigues, ‘‘A Bayesian long-term survival model parametrized in the cured fraction,’’ Biometrical J. 51, 443–455 (2009).

    Article  MathSciNet  Google Scholar 

  15. V. G. Cancho, E. M. Ortega, and H. Bolfarine, ‘‘The log-exponentiated Weibull regression models with cure rate: Local influence and residual analysis,’’ J. Data Sci. 7, 433–458 (2009).

    Article  Google Scholar 

  16. H. Gomez, O. Pacheco, and H. Bolfarine, ‘‘An extension of the generalized Birnbaum–Saunders distribution,’’ Stat. Probab. Lett. 79, 334–338 (2009).

    Article  MathSciNet  Google Scholar 

  17. M. de Castro, V. G. Cancho, and J. Rodrigues, ‘‘A note on a unified approach for cure rate models,’’ Brazil. J. Probab. Stat. 24, 100–103 (2010).

    MathSciNet  MATH  Google Scholar 

  18. V. G. Cancho, J. Rodrigues, and M. de Castro, ‘‘A flexible model for survival data with a cure rate: A Bayesian approach,’’ J. Appl. Stat. 38, 57–70 (2011).

    Article  MathSciNet  Google Scholar 

  19. V. G. Cancho, F. Louzada, and G. D. C. Barriga, ‘‘The Geometric Birnbaum–Saunders regression model with cure rate,’’ J. Stat. Plann. Infer. 142, 993–1000 (2012).

    Article  MathSciNet  Google Scholar 

  20. D. I. Gallardo, Y. M. Gomez, and M. de Castro, ‘‘A flexible cure rate model based on the polylogarithm distribution,’’ J. Stat. Comput. Simul. 88, 1–13 (2018).

    Article  MathSciNet  Google Scholar 

  21. M. de Castro and Y. M. Gomez, ‘‘A Bayesian cure rate model based on the power piecewise exponential distribution,’’ Meth. Comput. Appl. Probab. 22, 677–692 (2020).

    Article  MathSciNet  Google Scholar 

  22. D. V. Lindley, ‘‘Fiducial distributions and Bayes theorem,’’ J. Roy. Stat. Soc. B: Stat. Meth. 20, 102–107 (1958).

    MathSciNet  MATH  Google Scholar 

  23. M. E. Ghitany, B. Atieh, and S. Nadarajah, ‘‘Lindley distribution and its Applications,’’ Math. Comput. Simul. 78, 493–5006 (2008).

    Article  MathSciNet  Google Scholar 

  24. S. Nadarajah, H. S. Bakouch, and R. Tahmasbi, ‘‘A generalized Lindley distribution,’’ Sankhya B: Indian J. Stat. 73, 331–359 (2011).

    Article  MathSciNet  Google Scholar 

  25. M. E. Ghitany, D. K. Al-Mutairi, N. Balakrishnan, and L. J. Al-Enezi, ‘‘Power Lindley distribution and associated inference,’’ Comput. Stat. Data Anal. 64, 20–33 (2013).

    Article  MathSciNet  Google Scholar 

  26. R. Shanker and A. Mishra, ‘‘A quasi Lindley distribution,’’ Afr. J. Math. Comput. Sci. Res. 6, 64–71 (2013).

    MATH  Google Scholar 

  27. F. Merovci and V. K. Sharma, ‘‘The Beta-Lindley distribution: Properties and applications,’’ J. Appl. Math. 2014, 1–10 (2014).

    Article  MathSciNet  Google Scholar 

  28. P. Jodra, ‘‘Computer generation of random variables with Lindley or Poisson–Lindley distribution via the Lambert W function,’’ Math. Comput. Simul. 81, 851–859 (2010).

    Article  MathSciNet  Google Scholar 

  29. P. K. Andersen and L. T. Skovgaard, Regression with Linear Predictors (Springer, New York, 2010).

    Book  Google Scholar 

  30. T. Scheike, Timereg Package, R package Vers. 1.1-0, R package Vers. 1.1-6 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wasinrat Sirithip or Pudprommarat Chookait.

Additional information

(Submitted by A. I. Volodin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirithip, W., Chookait, P. Negative Binomial–Lindley Cure Rate Model. Lobachevskii J Math 42, 3230–3240 (2021). https://doi.org/10.1134/S199508022201019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022201019X

Keywords:

Navigation