Skip to main content
Log in

Star Order and Partial Isometries in \(\boldsymbol{C}^{\mathbf{\ast}}\)-Algebras

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the poset of partial isometries in \(C^{\ast}\)-algebras endowed with the \(\ast\)-order and \(\ast\)-orthogonality. We show that this structure is a complete Jordan invariant for \(AW^{\ast}\)-algebras. We prove that partial isometries in von Neumann algebras form a lower semilattice. The structures of partial isometries and projections are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Antezana, C. Cano, I. Musconi, and D. Stojanoff, ‘‘A note on the star order in Hilbert spaces,’’ Lin. Multilin. Algebra 58, 1037–1051 (2010).

    Article  MathSciNet  Google Scholar 

  2. M. Battaglia, “Order theoretic type decompositions of JBW\({}^{*}\)-triple,” Quart. J. Math. Oxford, Ser. A 42, 129–147 (1991);

    MathSciNet  MATH  Google Scholar 

  3. M. Battaglia, ‘‘Order theoretic type decompositions of JBW\({}^{*}\)-triple,’’ Quart. J. Math. Oxford, Ser. A 42, 129–147 (1991); Quart. J. Math. Oxford, Ser. A 42, 166 (1991).

  4. S. K. Berberian, Bear \(*\) -Rings (Springer, Berlin, 1972).

  5. M. Bohata, ‘‘Star order on operator and function algebras,’’ Publ. Math. Debrecen 79, 211–229 (2011).

    Article  MathSciNet  Google Scholar 

  6. M. Bohata and J. Hamhalter, ‘‘Nonlinear maps on von Neumann algebras preserving the star order,’’ Lin. Multilin. Algebra 61, 998–1009 (2013).

    Article  MathSciNet  Google Scholar 

  7. Cho-Ho Chu, Jordan Structures in Geometry and Analysis (Cambridge Univ. Press, Cambridge, 2012).

    MATH  Google Scholar 

  8. G. Dolibar and L. Molnár, ‘‘Maps on quantum observables preserving the Gudder order,’’ Rep. Math. Phys., No. 60, 159–166 (2007).

  9. M. P. Drazin, ‘‘Natural structures on semigroups with involution,’’ Bull. Am. Math. Soc. 84, 139–141 (1978).

    Article  MathSciNet  Google Scholar 

  10. M. Macabre Garcia and A. Rodrguez Palacois, Non-Associative Normed Algebras, Vol. 167 of Encyclopedia of Mathematics and its Applications (Cambridge Univ. Press, Cambridge, 2018), Vol. 2.

  11. C. M. Edwards and G. T. Rütimann, ‘‘On the facial structure of the unit ball in a JBW\({}^{*}\) triple,’’ Math. Scand. 82, 317–332 (1989).

    Google Scholar 

  12. C. M. Edwards and G. T. Rütimann, ‘‘Exposed faces of the unit ball in a JBW\({}^{*}\)-triple,’’ Math. Scand. 82, 287–304 (1998).

    Article  MathSciNet  Google Scholar 

  13. H. A. Dye, ‘‘On the geometry of projections in certain operator algebras,’’ Ann. Math. 61, 73–89 (1955).

    Article  MathSciNet  Google Scholar 

  14. J. Hamhalter, ‘‘Dye’s theorem and Gleason’s theorem for AW\({}^{*}\)-algebras,’’ J. Math. Anal. Appl. 422, 1103–1115 (2015).

    Article  MathSciNet  Google Scholar 

  15. J. Hamhalter and E. Turilova, ‘‘Jordan invariants of von Neumann algebras and Choquet order on state spaces,’’ Int. J. Theor. Phys. 60, 597 (2021). https://doi.org/10.1007/S10773-019-04157-w

    Article  Google Scholar 

  16. J. Hamhalter, O. F. K. Kalenda, and A. M. Peralta, ‘‘Finite tripotents and finite JBW\({}^{*}\) triples,’’ J. Math. Anal. Appl. 490, 124217 (2020).

    Article  MathSciNet  Google Scholar 

  17. J. Hamhalter, ‘‘Dye’s theorem for tripotents in von Neumann algebras and \(JBW^{\ast}\)-triplets,’’ arxiv: 2101.08302v1 (2021).

  18. R. E. Hartwig and M. P. Drazin, ‘‘Lattice properties of the \(\ast\)-order for complex matrices,’’ J. Math. Anal. Appl. 86, 359–378 (1982).

    Article  MathSciNet  Google Scholar 

  19. B. Lindenhovius, ‘‘C(A),’’ PhD Thesis (Radbound Univ. Nijmegen, Netherlands, 2016).

  20. J. H. Liu, C. Y. Chou, C. J. Liao, and N. C. Wong, ‘‘Linear disjointness preservers of operator algebras and related structures,’’ Acta Sci. Math. (Szeged) 84, 277–307 (2018).

    Article  MathSciNet  Google Scholar 

  21. L. Molnár, ‘‘On certain automorphisms of sets of partial isometries,’’ Arch. Math. 78, 43–50 (2002).

    Article  MathSciNet  Google Scholar 

  22. H. Hanche-Olsen and E. Stormer, Jordan Operator Algebras (Pitman Advanced, Boston, 1984).

    MATH  Google Scholar 

  23. A. M. Peralta and F. J. Fernando-Polo, ‘‘Partial isometries: A survey,’’ Adv. Oper. Theory 3, 87–128 (2018).

    Article  MathSciNet  Google Scholar 

  24. M. Takesaki, Theory of Operator Algebras I (Springer, New York, 1979).

    Book  Google Scholar 

Download references

Funding

The work of J. Hamhalter was supported by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/ 16_019/0000778.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Hamhalter or E. Turilova.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamhalter, J., Turilova, E. Star Order and Partial Isometries in \(\boldsymbol{C}^{\mathbf{\ast}}\)-Algebras. Lobachevskii J Math 42, 2325–2332 (2021). https://doi.org/10.1134/S1995080221100085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221100085

Keywords:

Navigation