Skip to main content
Log in

Influence of Liquid Pressure on the Collapse of a Vapor Bubble in Cold and Cool Acetone

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The features of the fluid compression in a vapor bubble during its collapse in cold (273 K) and cool (293 K) acetone are studied. The liquid pressure \(p_{0}\) is varied in the range 0.12–5 bar. The full hydrodynamic model is used in vapor and liquid. The non-stationary heat conductivity of both fluids and non-equilibrium mass transfer across the bubble surface are taken into account. Realistic wide-range equations of state are applied. It is shown that as the liquid pressure \(p_{0}\) is diminished, the depth of the bubble collapse decreases in cold acetone, but grows in cool acetone. The maximum of the collapse rate decreases monotonically in cool acetone. In cold acetone it is reduced only in an interval bounded by a certain value of \(p_{0}\), and then it increases. As a result, with decreasing \(p_{0}\) of cool acetone, the vapor in the bubble is compressed first by radially convergent shock waves, then by isentropic waves, and after that its nearly uniform compression takes place, whereas only the first scenario is realized in cold acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. N. S. Khabeev, ‘‘The question of the uniform-pressure condition in bubble dynamics,’’ Fluid Dyn. 45, 208–210 (2010).

    Article  Google Scholar 

  2. S. J. Shaw and P. D. M. Spelt, ‘‘Shock emission from collapsing gas bubbles,’’ J. Fluid Mech. 646, 363–373 (2010).

    Article  Google Scholar 

  3. W. C. Moss, D. B. Clarke, and D. A. Young, ‘‘Calculated pulse widths and spectra of a single sonoluminescing bubble,’’ Science (Washington, DC, U. S.) 276, 1398–1401 (1997).

    Article  Google Scholar 

  4. R. I. Nigmatulin, I. Sh. Akhatov, A. S. Topolnikov, R. Kh. Bolotnova, N. K. Vakhitova, R. T. Lahey, Jr., and R. P. Taleyarkhan, ‘‘The theory of supercompression of vapor bubbles and nano-scale thermonuclear fusion,’’ Phys. Fluid 17, 107106 (2005).

    Article  Google Scholar 

  5. A. Bass, S. J. Ruuth, C. Camara, B. Merriman, and S. Putterman, ‘‘Molecular dynamics of extreme mass segregation in a rapidly collapsing bubble,’’ Phys. Rev. Lett. 101, 234301 (2008).

    Article  Google Scholar 

  6. A. A. Aganin, M. A. Ilgamov, and D. Yu. Toporkov, ‘‘Dependence of vapor compression inside cavitation bubbles in water and acetone on the pressure of liquid,’’ Vestn. Bashkir. Univ. 20, 807–812 (2015).

    Google Scholar 

  7. R. I. Nigmatulin, A. A. Aganin, and D. Yu. Toporkov, ‘‘Dependence of vapor bubble collapse in hot tetradecane on its pressure,’’ Thermophys. Aeromech. 26, 879–887 (2019).

    Article  Google Scholar 

  8. D. Yu. Toporkov, ‘‘Influence of the liquid pressure on collapse of a vapor bubble in hot acetone,’’ Lobachevskii J. Math. 40 (6), 814–818 (2019).

    Article  MathSciNet  Google Scholar 

  9. A. A. Aganin and A. I. Davletshin, ‘‘Interaction of cavitation bubbles in acetone at their strong enlargement and collapse,’’ Lobachevskii J. Math. 40 (6), 699–704 (2019).

    Article  MathSciNet  Google Scholar 

  10. R. I. Nigmatulin, A. A. Aganin, and A. I. Davletshin, ‘‘Deformation of cavitation bubbles during implementation of their supercompression in a cluster,’’ Dokl. Phys. 65, 18–22 (2020).

    Article  Google Scholar 

  11. R. I. Nigmatulin, Dynamics of Multiphase Media (Hemisphere, New York, 1991).

    Google Scholar 

  12. R. I. Nigmatulin and R. Kh. Bolotnova, ‘‘Wide-range equation of state for organic liquids: Acetone as an example,’’ Dokl. Phys. 52, 442–446 (2007).

    Article  Google Scholar 

  13. A. A. Aganin, ‘‘Dynamics of a small bubble in a compressible fluid,’’ Int. J. Numer. Meth. Fluids 33, 157–174 (2000).

    Article  Google Scholar 

  14. A. A. Aganin and M. A. Ilgamov, ‘‘Gas bubble dynamics in the center of spherical liquid volume,’’ Mat. Model. 13, 26–40 (2001).

    MathSciNet  MATH  Google Scholar 

  15. W. C. Moss, D. B. Clarke, J. W. White, and D. A. Young, ‘‘Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,’’ Phys. Fluids 6, 2979–2985 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Toporkov.

Additional information

(Submitted by D. A. Gubaidullin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toporkov, D.Y. Influence of Liquid Pressure on the Collapse of a Vapor Bubble in Cold and Cool Acetone. Lobachevskii J Math 42, 2226–2231 (2021). https://doi.org/10.1134/S1995080221090274

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221090274

Keywords:

Navigation