Skip to main content
Log in

Muller Boundary Integral Equations in the Microring Lasers Theory

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The current paper clarifies the connection between the generalized complex-frequency eigenvalue problem and the corresponding nonlinear eigenvalue problem for the set of Muller integral equations posed on two disjoint closed curves. It is proved that the last problem has no solutions if the original problem and a specially tailored eigenvalue problem do not have solutions. This result is important for using the Muller boundary integral equations in the microring lasers theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, 2nd ed. (Dover, New York, 1972).

    MATH  Google Scholar 

  2. V. O. Byelobrov, J. Ctyroky, T. M. Benson, R. Sauleau, A. Altintas, and A. I. Nosich, ‘‘Low-threshold lasing modes of infinite periodic chain of quantum wires,’’ Opt. Lett. 35, 3634–3636 (2010).

    Article  Google Scholar 

  3. V. O. Byelobrov, T. M. Benson, and A. I. Nosich, ‘‘Binary grating of sub-wavelength silver and quantum wires as a photonic-plasmonic lasing platform with nanoscale elements,’’ IEEE J. Sel. Top. Quantum Electron. 18, 1839–1846 (2012).

    Article  Google Scholar 

  4. S. V. Boriskina, P. Sewell, T. M. Benson, and A. I. Nosich, ‘‘Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization,’’ J. Opt. Soc. Am. A 21, 393–402 (2004).

    Article  Google Scholar 

  5. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (SIAM, Philadelphia, 2013).

    Book  Google Scholar 

  6. W. Du, C. Li, J. Sun, H. Xu, P. Yu, A. Ren, J. Wu, and Z. Wang, ‘‘Nanolasers based on 2D materials,’’ Laser Photon. Rev., 2000271 (2020).

  7. A. Frolov and E. Kartchevskiy, ‘‘Integral equation methods in optical waveguide theory,’’ Springer Proc. Math. Stat. 52, 119–133 (2013).

    Google Scholar 

  8. P. Heider, ‘‘Computation of scattering resonances for dielectric resonators,’’ Comput. Math. Appl. 60, 1620–1632 (2010).

    Article  MathSciNet  Google Scholar 

  9. E. M. Karchevskii, ‘‘The fundamental wave problem for cylindrical dielectric waveguides,’’ Differ. Equat. 36, 1109–1111 (2000).

    Article  MathSciNet  Google Scholar 

  10. R. Misawa, K. Niino, and N. Nishimura, ‘‘Boundary integral equations for calculating complex eigenvalues of transmission problems,’’ SIAM J. Appl. Math. 77, 770–788 (2017).

    Article  MathSciNet  Google Scholar 

  11. C. Muller, Foundations of the Mathematical Theory of Electromagnetic Waves (Springer, Berlin, 1969).

    Book  Google Scholar 

  12. D. M. Natarov, T. M. Benson, and A. I. Nosich, ‘‘Electromagnetic analysis of the lasing thresholds of hybrid plasmon modes of a silver tube nanolaser with active core and active shell,’’ Beilstein J. Nanotechnol. 10, 294–304 (2019).

    Article  Google Scholar 

  13. A. O. Oktyabrskaya, A. I. Repina, A. O. Spiridonov, E. M. Karchevskii, and A. I. Nosich, ‘‘Numerical modeling of on-threshold modes of eccentric-ring microcavity lasers using the Muller integral equations and the trigonometric Galerkin method,’’ Opt. Commun. 476, 126311 (2020).

  14. A. O. Oktyabrskaya, A. O. Spiridonov, and E. M. Karchevskii, ‘‘Muller boundary integral equations for solving generalized complex-frequency eigenvalue problem,’’ Lobachevskii J. Math. 41, 1377–1384 (2020).

    Article  MathSciNet  Google Scholar 

  15. H. Reichardt, ‘‘Ausstrahlungsbedingungen für die Wellengleihung,’’ Abhandlung. Math. Sem. Univ. Hamburg 24, 41–53 (1960).

    Article  MathSciNet  Google Scholar 

  16. O. V. Shapoval, K. Kobayashi, and A. I. Nosich, ‘‘Electromagnetic engineering of a single-mode nanolaser on a metal plasmonic strip placed into a circular quantum wire,’’ IEEE J. Sel. Top. Quantum Electron. 23, 1501609 (2017).

  17. E. I. Smotrova and A. I. Nosich, ‘‘Mathematical study of the two-dimensional lasing problem for the whispering-gallery modes in a circular dielectric microcavity,’’ Opt. Quantum Electron. 36, 213–221 (2004).

    Article  Google Scholar 

  18. E. I. Smotrova, V. Tsvirkun, I. Gozhyk, C. Lafargue, C. Ulysse, M. Lebental, and A. I. Nosich, ‘‘Spectra, thresholds, and modal fields of a kite-shaped microcavity laser,’’ J. Opt. Soc. Am. B 30, 1732–1742 (2013).

    Article  Google Scholar 

  19. A. O. Spiridonov and E. M. Karchevskii, ‘‘Projection methods for computation of spectral characteristics of weakly guiding optical waveguides,’’ in Proceedings of the International Conference on Days on Diffraction, 2013, pp. 131–135.

  20. A. O. Spiridonov and E. M. Karchevskii, ‘‘Mathematical and numerical analysis of the spectral characteristics of dielectric microcavities with active regions,’’ in Proceedings of the International Conference on Days on Diffraction, 2016, pp. 390–395.

  21. A. O. Spiridonov, E. M. Karchevskii, T. M. Benson, and A. I. Nosich, ‘‘Why elliptic microcavity lasers emit light on bow-tie-like modes instead of whispering-gallery-like modes,’’ Opt. Commun. 439, 112–117 (2019).

    Article  Google Scholar 

  22. A. O. Spiridonov, E. M. Karchevskii, and A. I. Nosich, ‘‘Rigorous formulation of the lasing eigenvalue problem as a spectral problem for a fredholm operator function,’’ Lobachevskii J. Math. 39 (8), 1148–1157 (2018).

    Article  MathSciNet  Google Scholar 

  23. A. O. Spiridonov, E. M. Karchevskii, and A. I. Nosich, ‘‘Mathematical and numerical modeling of on-threshold modes of 2-D microcavity lasers with piercing holes,’’ Axioms 8, 1–16 (2019).

    Article  Google Scholar 

  24. A. O. Spiridonov, A. O. Oktyabrskaya, E. M. Karchevskii, and A. I. Nosich, ‘‘Mathematical and numerical analysis of the generalized complex-frequency eigenvalue problem for two-dimensional optical microcavities,’’ SIAM J. Appl. Math. 80, 1977–1998 (2020).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Repina, A. O. Oktyabrskaya or E. M. Karchevskii.

Additional information

(Submitted by E. E. Tyrtyshnikov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repina, A.I., Oktyabrskaya, A.O. & Karchevskii, E.M. Muller Boundary Integral Equations in the Microring Lasers Theory. Lobachevskii J Math 42, 1402–1412 (2021). https://doi.org/10.1134/S199508022106024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022106024X

Keywords:

Navigation