Skip to main content
Log in

Localization in the Liouville Lattice and Movable Discrete Breathers

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Nonlinear differential-difference equations (nonlinear lattices) exhibit single soliton solutions in the form of 1-breathers. These solutions are time-periodic and exponentially localized in space. Necessary condition for their existence is the upper bounds on the linear spectrum of small perturbations around stationary point of the system. Unlike continuous models, integrability property do not help nonlinear lattices to have multi-breather solutions. The C-integrable Liouville lattice is discussed in view to get moving breathers, i.e. true time-periodic multi-solitons with free velocity and amplitude. We construct analogs of instanton solutions which are localized both in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. Theory of Solitons: The Inverse Scattering Method, Ed. by S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov (Nauka, Moscow, 1980; Springer, New York, 1984).

  2. S. Flach, ‘‘Existence and properties of discrete breathers,’’ in Nonlinear Physics Theory and Experiment, Ed. by E. Alfinito (World Scientific, Singapore, 1996), pp. 390–397.

    Google Scholar 

  3. S. Takeno, ‘‘Theory of stationary anharmonic localized modes in solids,’’ J. Phys. Soc. Jpn. 61, 2821–2834 (1992).

    Article  Google Scholar 

  4. S. Flasch and S. R. Willis, ‘‘Discrete breathers,’’ Phys. Rep. 298, 181–294 (1998).

    Article  MathSciNet  Google Scholar 

  5. D. Hennig and G. P. Tsironis, ‘‘Wave transition in nonlinear lattices,’’ Phys. Rep. 310, 333–432 (1999).

    Article  Google Scholar 

  6. V. E. Adler and S. Ya. Startsev, ‘‘On discrete analogues of Liouville equation,’’ Theor. Math. Phys. 121, 271–284 (1999).

    Article  MathSciNet  Google Scholar 

  7. J. Liouville, ‘‘Sur l’equation aux differences partielles \(\frac{d^{2}\log\lambda}{dudv}\pm\frac{\lambda}{2a^{2}}=0\),’’ J. Math. Pures Appl. 18, 71–72 (1853).

    Google Scholar 

  8. B. Birnir, ‘‘Qualitative analysis of radiating breathers,’’ Comm. Pure Appl. Math. 47, 103–117 (1994).

    Article  MathSciNet  Google Scholar 

  9. H. Segur and M. D. Kruskal, ‘‘Nonexistence of small-amplitude breather solutions in \(phi^{4}\) theory,’’ Phys. Rev. Lett. 58, 747–751 (1987).

    Article  MathSciNet  Google Scholar 

  10. W. Magnus and S. Winkler, Hill’s Equation (Interscience, New York, 1966).

    MATH  Google Scholar 

  11. F. Colombini, V. Petkov, and J. Rauch, ‘‘Exponential growth for the wave equation with compact time-periodic positive potential,’’ Comm. Pure Appl. Math. 62, 565–582 (2009).

    Article  MathSciNet  Google Scholar 

  12. F. Colombini and J. Rauch, ‘‘Smooth localized parametric resonance for wave equations,’’ J. Reine Angew. Math. 616, 1–14 (2008).

    Article  MathSciNet  Google Scholar 

  13. V. M. Eleonskii, N. E. Kulagin, N. S. Novozhilova, and V. P. Silin, ‘‘Asymptotic expansions and qualitative analysis of finite-dimensional models in nonlinear field theory,’’ Teor. Mat. Fiz. 60, 395–403 (1984).

    Article  MathSciNet  Google Scholar 

  14. M. Toda, ‘‘Vibration of a chain with nonlinear interaction,’’ J. Phys. Soc. Jpn. 22, 431–436 (1967).

    Article  Google Scholar 

  15. M. Toda, ‘‘Wave propagation in anharmonic lattices,’’ J. Phys. Soc. Jpn. 23, 501–506 (1967).

    Article  Google Scholar 

  16. V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics (Benjamin, New York, 1968).

    MATH  Google Scholar 

  17. S. Aubry and T. Cretegny, ‘‘Mobility and reactivity of discrete breathers,’’ Phys. D (Amsterdam, Neth.) 119, 34–46 (1998).

  18. G. Darboux, Lecons sur la theorie generale des surfaces et les applications geometriques du calcul infinitesimal (Gauthier-Villars, Paris, 1896).

    MATH  Google Scholar 

  19. V. V. Sokolov and A. V. Zhiber, ‘‘On the Darboux integrable hyperbolic equations,’’ Phys. Lett. A 208, 303–308 (1995).

    Article  MathSciNet  Google Scholar 

  20. J. L. Marin, J. C. Eilbeck, and F. M. Russell, ‘‘2-D breathers and applications,’’ Lect. Notes Phys. 542, 293–305 (2000).

  21. Y. Yang and Y. Zhu, ‘‘Darboux–Bäcklund transformation, breather and rogue wave solutions for Ablowitz–Ladik equation,’’ Optik 217, 164920 (2020).

  22. A. K. Pogrebkov, ‘‘Singular solitons: An example of a sinh-Gordon equation,’’ Lett. Math. Phys. 5, 277–285 (1981).

    Article  MathSciNet  Google Scholar 

  23. Instantons in Gauge Theories, Ed. by M. A. Shifman (World Scientific, Singapore, 1994).

    Google Scholar 

  24. H. J. W. Müller-Kirsten, Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed. (World Scientific, Singapore, 2012).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Novokshenov.

Additional information

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novokshenov, V.Y. Localization in the Liouville Lattice and Movable Discrete Breathers. Lobachevskii J Math 42, 1210–1218 (2021). https://doi.org/10.1134/S1995080221060214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080221060214

Keywords:

Navigation