Skip to main content
Log in

The Explicit Formula for Solution of Anomalous Diffusion Equation in the Multi-Dimensional Space

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper intends on obtaining the explicit solution of \(n\)-dimensional anomalous diffusion equation in the infinite domain with non-zero initial condition and vanishing condition at infinity. It is shown that this equation can be derived from the parabolic integro-differential equation with memory in which the kernel is \(t^{-\alpha}E_{1-\alpha,1-\alpha}(-t^{1-\alpha})\), \(\alpha\in(0,1),\) where \(E_{\alpha,\beta}\) is the Mittag-Liffler function. Based on Laplace and Fourier transforms the properties of the Fox H-function and convolution theorem, explicit solution for anomalous diffusion equation is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. M. Goloviznin, P. S. Kondratenko, L. V. Matveev, et al., Anomalous Diffusion of Radionuclides of Highly Heterogeneous Geological Formations (Nauka, Moscow 2010) [in Russian].

    Google Scholar 

  2. E. Abad, S. B. Yuste, and K. Lindenberg, ‘‘Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks,’’ Phys. Rev. E 81, 031115 (2010).

  3. A. V. Chechkin, R. Goreno, and M. Sokolov, ‘‘Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,’’ Phys. Rev. E 66, 046129 (2002).

  4. R. Metzler, W. G. Glockle, and T. F. Nonnenmacher, ‘‘Fractional model equation for anomalous diffusion,’’ Phys. A (Amsterdam, Neth.) 211, 13–24 (1994).

  5. R. Metzler and J. Klafter, ‘‘The random walk’s guide to anomalous diffusion: A fractional dynamics approach,’’ Phys. Rep. 339, 1–77 (2000).

    Article  MathSciNet  Google Scholar 

  6. G. M. Zaslavsky, ‘‘Chaos, fractional kinetics, and anomalous transport,’’ Phys. Rep. 371, 461–580 (2002).

    Article  MathSciNet  Google Scholar 

  7. A. N. Bogolyubov, A. A. Potapov, and S. Sh. Rikhviashvili, ‘‘An approach to introducing fractional integro-differentiation in classical electrodynamics,’’ Mosc. Univ. Phys. Bull. 64, 365 (2009).

    Article  Google Scholar 

  8. T. M. Atanackovic, S. Pilipovic, and D. Zorica, ‘‘A diffusion-wave equation with two fractional derivatives of different order,’’ J. Phys. A: Math. Theor. 40, 5319–5333 (2007).

    Article  MathSciNet  Google Scholar 

  9. Yu. Luchko, F. Mainardi, and Yu. Povstenko, ‘‘Propagation speed of the maximum of the fundamental solution to the fractional diffusion-wave equation,’’ Comput. Math. Appl. 66, 774–784 (2013).

    Article  MathSciNet  Google Scholar 

  10. F. Mainardi, ‘‘The time fractional diffusion-wave equation,’’ Radiophys. Quantum Electron. 38, 13–24 (1995).

    Article  MathSciNet  Google Scholar 

  11. F. Mainardi, ‘‘Fractional relaxation-oscillation and fractional diffusion-wave phenomena,’’ Chaos, Solitons Fractals 7, 1461–1477 (1996).

    Article  MathSciNet  Google Scholar 

  12. E. Barkai, ‘‘Fractional Fokker–Planck equation, solution, and application,’’ Phys. Rev. E 63, 046118 (2001).

  13. A. V. Chechkin, J. Klafter, and I. M. Sokolov, ‘‘Fractional Fokker–Planck equation for ultraslow kinetics,’’ Europhys. Lett. 63, 326–332 (2003).

    Article  Google Scholar 

  14. R. Kazakevicius and J. Ruseckas, ‘‘Anomalous diffusion in nonhomogeneous media: Power spectral density of signals generated by time-subordinated nonlinear Langevin equations,’’ Phys. A (Amsterdam, Neth.) 438, 210–222 (2015).

  15. R. Metzler, E. Barkai, and J. Klafter, ‘‘Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker–Planck equation approach,’’ Phys. Rev. Lett. 82, 3563–3567 (1999).

    Article  Google Scholar 

  16. G. M. Zaslavsky, ‘‘Chaos, fractional kinetics, and anomalous transport,’’ Phys. Rep. 371, 461–580 (2002).

    Article  MathSciNet  Google Scholar 

  17. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, ‘‘Application of a fractional advection-dispersion equation,’’ Water Resour. Res. 36, 1403–1412 (2000).

    Article  Google Scholar 

  18. D. Bolster, D. A. Benson, M. M. Meerschaert, and B. Baeumer, ‘‘Mixing-driven equilibrium reactions in multidimensional fractional advection-dispersion systems,’’ Phys. A (Amsterdam, Neth.) 392, 2513–2525 (2013).

  19. R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, ‘‘Multiscaling fractional advection-dispersion equations and their solutions,’’ Water Resour. Res. 39, 1022 (2003).

    Google Scholar 

  20. Y. Zhang, D. A. Benson, and D. M. Reeves, ‘‘Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications,’’ Adv. Water Resour. 32, 561–581 (2009).

    Article  Google Scholar 

  21. Anomalous Transport: Foundations and Applications, Ed. by R. Klages, G. Radons, and I. M. Sokolov (Wiley-VCH, Berlin, 2008).

    Google Scholar 

  22. D. Del-Castillo-Negrete, B. A. Carreras, and V. E. Lynch, ‘‘Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach,’’ Phys. Rev. Lett. 91, 018302 (2003).

  23. R. K. Saxena, A. M. Mathai, and H. J. Haubold, ‘‘Fractional reaction-diffusion equations,’’ Astrophys. Space Sci. 305, 289–296 (2006).

    Article  Google Scholar 

  24. A. A. Kilbas, T. Pierantozzi, J. J. Trujillo, and L. Vazquez, ‘‘On the solution of fractional evolution equations,’’ J. Phys. A: Math. Gen. 37, 3271–3283 (2004).

    Article  MathSciNet  Google Scholar 

  25. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Amsterdam, Elsevier, 2006).

    MATH  Google Scholar 

  26. A. A. Kilbas, J. J. Trujillo, and A. A. Voroshilov, ‘‘Cauchy-type problem for difussion-wave equation with the Riemann-Liouville partial derivative,’’ Fract. Calc. Appl. Anal. 9, 225–239 (2005).

    MATH  Google Scholar 

  27. E. L. Shishkina and S. M. Sitnik, Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics (Elsevier, Amsterdam, 2020).

    MATH  Google Scholar 

  28. A. N. Kochubei and S. D. Eidelman, ‘‘The fundamental solutions for the fractional diffusion-wave equation,’’ J. Diff. Equat. 199, 211–255 (2004).

    Article  Google Scholar 

  29. A. N. Kochubei, ‘‘Diffusion of fractional order,’’ Differ. Equat. 26, 485–492 (1990).

    MathSciNet  MATH  Google Scholar 

  30. Yu. Luchko, ‘‘Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation,’’ Comput. Math. Appl. 59, 1766–1772 (2010).

    Article  MathSciNet  Google Scholar 

  31. Yu. Luchko, ‘‘Anomalous diffusion: Models, their analysis, and interpretation,’’ in Advances in Applied Analysis, Ed. by S. Rogosin and A. Koroleva (Birkhauser, Boston, 2012), pp. 115–145.

    MATH  Google Scholar 

  32. F. Mainardi, ‘‘The fundamental solutions for the fractional diffusion-wave equation,’’ Appl. Math. Lett. 9 (6), 25–28 (1996).

    Article  MathSciNet  Google Scholar 

  33. F. Mainardi, Yu. Luchko, and G. Pagnini, ‘‘The fundamental solution of the space-time fractional diffusion equation,’’ Fract. Calc. Appl. Anal. 4, 153–192 (2001).

    MathSciNet  MATH  Google Scholar 

  34. A. Aghajani, Y. Jalilian, and J. J. Trujillo, ‘‘On the existence of solutions of fractional integro-differential equations,’’ Fract. Calc. Appl. Anal. 15, 44–69 (2012).

    Article  MathSciNet  Google Scholar 

  35. R. Schumer, D. A. Benson, M. M. Meerschaert, and B. Baeumer, ‘‘Fractal mobile/immobile solute transport,’’ Water Resour. Res. 39, 1–12 (2003).

    Google Scholar 

  36. A. Giusti, I. Colombaro, R. Garra, et al., ‘‘Apractical guide to Prabhakar fractional calculus,’’ Fract. Calc. Appl. Anal. 23, 9–54 (2020).

    Article  MathSciNet  Google Scholar 

  37. A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-function: Theory and Application (Springer, Berlin, 2010).

    Book  Google Scholar 

  38. Z̆. Tomovski and T. Sandev, ‘‘Effects of a fractional friction with power-law memory kernel on string fibrations,’’ Comput. Math. Appl. 62, 1554–1561 (2011).

    Article  MathSciNet  Google Scholar 

  39. Z̆. Tomovski, R. Hilfer, and H. M. Srivastava, ‘‘Fractional and operational calculus with generalized fractional derivatives operators and Mittag-Leffler type functions,’’ Integral Transform. Spec. Funct. 21, 797–814 (2010).

    Article  MathSciNet  Google Scholar 

  40. C. Li, W. H. Deng, and X. Q. Shen, ‘‘Exact solutions and the asymptotic behaviors for the averaged generalized fractional elastic models,’’ Commun. Theor. Phys. 62, 443–450 (2014).

    Article  MathSciNet  Google Scholar 

  41. Y. Zao and F. Zao, ‘‘The analytical solution of parabolic Volterra integro-differential equations in the infinite domain,’’ Entropy 18 (344), 14 (2016).

    Article  MathSciNet  Google Scholar 

  42. E. Hille and J. D. Tamarkin, ‘‘On the theory of linear integral equations,’’ Ann. Math. 31, 479–528 (1930).

    Article  MathSciNet  Google Scholar 

  43. Yu. Luchko, ‘‘Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation,’’ Fract. Calc. Appl. Anal. 15, 141–160 (2012).

    Article  MathSciNet  Google Scholar 

  44. R. Gorenflo and F. Mainardi, ‘‘Fractional calculus: Integral and differential equations of fractional order,’’ in Fractals and Fractional Calculus in Continuum Mechanics (Springer, Wien, 1997), pp. 223–276.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Durdimurod Durdiev, Elina Shishkina or Sergey Sitnik.

Additional information

(Submitted by A. B. Muravnik)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durdiev, D., Shishkina, E. & Sitnik, S. The Explicit Formula for Solution of Anomalous Diffusion Equation in the Multi-Dimensional Space. Lobachevskii J Math 42, 1264–1273 (2021). https://doi.org/10.1134/S199508022106007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508022106007X

Keywords:

Navigation