Skip to main content
Log in

Discrete Sources Method to Solve Nonlocal Scattering Problems in Plasmonic Applications

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Current paper presents a comprehensive up-to-date review of one of the most recently developed numerical schemes based on the Discrete Sources Method. The aim of these developments is to implement and justify new efficient mathematical models allowing to accurately simulate response of small plasmonic nanoparticles with scale less than 10 nm to the different types of incident fields. Spatial dispersion effects of the material that are non-negligible at the given scales are incorporated into the numerical technique via Generalized Nonlocal Optical Response approach. Electron energy loss and plane wave scattering problems are considered, with the latter additionally featuring account for the presense of the substrate in the medium. Validity of the obtained results is ensured via a posteriori residual estimation, via comparison of computed scattering properties to the other available simulation techniques, and via comparison to the experimental electron energy loss measurements available in reference literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Book  Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  3. F. J. G. de Abajo, ‘‘Optical excitations in electron microscopy,’’ Rev. Mod. Phys. 82, 209–275 (2010).

    Article  Google Scholar 

  4. V. D. Kupradze, ‘‘On the approximate solution of problems in mathematical physics,’’ Usp. Mat. Nauk 22 (2), 58–108 (1967).

    MATH  Google Scholar 

  5. Yu. A. Eremin and A. G. Sveshnikov, Discrete Sources Method in Electromagnetic Diffraction Problems (Mosk. Gos. Univ., Moscow, 1992) [in Russian].

    Google Scholar 

  6. A. S. Il’inskii and A. G. Sveshnikov, Four Lectures on Numerical Methods in Diffraction Theory (Leningr. Gos. Univ., Leningrad, 1972) [in Russian].

    Google Scholar 

  7. A. S. Il’inskii, V. V. Kravtsov, and A. G. Sveshnikov, Mathematical Models of Electrodynamics (Vysshaya Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  8. A. Doicu, Y. Eremin, and T. Wriedt, Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources (Academic, London, 2000).

    MATH  Google Scholar 

  9. Yu. A. Eremin and I. V. Lopushenko, ‘‘A hybrid scheme of the discrete sources method for analyzing boundary value problems of nano-optics,’’ Mosc. Univ. Comput. Math. Cybern.40, 1–9 (2016).

    Article  Google Scholar 

  10. Yu. A. Eremin and I. V. Lopushenko, ‘‘An analysis of the quantum effect of nonlocality in plasmonics using the discrete sources method,’’ Mosc. Univ. Phys. Bull.74, 570–576 (2019).

    Article  Google Scholar 

  11. V. I. Dmitriev and E. V. Zakharov, Integral Equations Method in Computational Electrodynamics (MAKS Press, Moscow, 2008) [in Russian].

    Google Scholar 

  12. L. F. Shampine, ‘‘Vectorized adaptive quadrature in MATLAB,’’ J. Comput. Appl. Math. 211, 131–140 (2008).

    Article  MathSciNet  Google Scholar 

  13. M. Mori and M. Sugihara, ‘‘The double-exponential transformation in numerical analysis,’’ J. Comput. Appl. Math. 127, 287–296 (2001).

    Article  MathSciNet  Google Scholar 

  14. F. J. G. de Abajo, ‘‘Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam,’’ Phys. Rev. B 59, 3095–3107 (1999).

    Article  Google Scholar 

  15. T. V. Teperik et al., ‘‘Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,’’ Opt. Express 21, 27306 (2013).

    Article  Google Scholar 

  16. S. Raza, Ph.D. Dissertation (Tech. Univ. of Denmark, Denmark, 2014).

  17. P. B. Johnson and R. W. Christy, ‘‘Optical constants of the noble metals,’’ Phys. Rev. B 6, 4370–4379 (1972).

    Article  Google Scholar 

  18. A. Campos et al., ‘‘Plasmonic quantum size effects in silver nanoparticles are dominated by interfaces and local environments,’’ Nat. Phys. 15, 275–280 (2018).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation of Basic Research (grant no. 20-01-00558-A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Lopushenko or A. G. Sveshnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopushenko, I.V., Sveshnikov, A.G. Discrete Sources Method to Solve Nonlocal Scattering Problems in Plasmonic Applications. Lobachevskii J Math 41, 1337–1353 (2020). https://doi.org/10.1134/S1995080220070240

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220070240

Keywords:

Navigation