Skip to main content

Numerical Solution of Mean Field Games Problems with Turnpike Effect

Abstract

We present a problem described by Mean Field Games (MFG) and Optimal Control theory on finite time horizon. This problem consists of a system of PDEs: a Kolmogorov–Fokker–Planck equation, evolving forward in time and a Hamilton–Jacobi–Bellman equation, evolving backwards in time. The numerical difficulties are based on a turnpike effect considered in this paper. We present an extremal problem whose necessary conditions of extremal satisfy the initial system of PDEs, and introduce its numerical solution at the heart of monotonic schemes. According to special assumptions, PDEs can be reduced to Riccati ODEs. We consider this reduction as a test example for the numerical solution of the extremal problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

REFERENCES

  1. J.-M. Lasry and P.-L. Lions, ‘‘Jeux á champ moyen. I. Le cas stationnaire,’’ C. R. Math. Acad. Sci. 343, 619–625 (2006).

    Article  MathSciNet  Google Scholar 

  2. J.-M. Lasry and P.-L. Lions, ‘‘Mean field games,’’ Jpn. J. Math. 2, 229–260 (2007).

    Article  MathSciNet  Google Scholar 

  3. O. Guéant, J.-M. Lasry, and P.-L. Lions, ‘‘Mean field games and applications,’’ in Paris-Princeton Lectures on Mathematical Finance 2010, Lect. Notes Math. 2003, 205–266 (2011).

    Article  Google Scholar 

  4. M. Huang, P. E. Caines, and R. P. Malhamé, ‘‘The NCE (mean field) principle with locality dependent cost interactions,’’ IEEE Trans. Autom. Control 55, 2799–2805 (2010).

    Article  MathSciNet  Google Scholar 

  5. L. Fatone, F. Mariani, M. C. Recchioni, and F. Zirilli, ‘‘A trading execution model based on mean field games and optimal control,’’ Appl. Math. 5, 3091–3116 (2014).

    Article  Google Scholar 

  6. P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations (Springer, Berlin, Heidelberg, 1992).

    Book  Google Scholar 

  7. A. Bensoussan, J. Frehse, and P. Yam, Mean Field Games and Mean Field Type Control Theory (Springer, New York, 2013).

    Book  Google Scholar 

  8. Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta, ‘‘Mean field games: numerical methods for the planning problem,’’ SIAM J. Control Optim. 50, 77–109 (2012).

    Article  MathSciNet  Google Scholar 

  9. J.-M. Lasry and P.-L. Lions, ‘‘Jeux á champ moyen. II. Horizon fini et controle optimal,’’ C. R. Math. Acad. Sci. 343, 679–684 (2006).

    Article  MathSciNet  Google Scholar 

  10. E. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955).

    MATH  Google Scholar 

  11. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Pergamon, Oxford, 1963).

    MATH  Google Scholar 

  12. A. Lachapelle, J. Salomon, and G. Turinici, ‘‘Computation of mean field equilibria in economics,’’ Math. Models Methods Appl. Sci. 20, 567–588 (2010).

    Article  MathSciNet  Google Scholar 

  13. A. V. Gulin and A. A. Samarskiy, Numerical Methods (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  14. J. Salomon and G. Turinici, ‘‘A monotonic method for solving nonlinear optimal control problems with concave dependence on the state,’’ Int. J. Control 84, 551–562 (2011).

    Article  Google Scholar 

  15. E. Trélat and E. Zuazua, ‘‘The turnpike property in finite-dimensional nonlinear optimal control,’’ J. Differ. Equat. 258, 81–114 (2015).

    Article  MathSciNet  Google Scholar 

  16. J. Stoer and R. Bulirsch, Introduction to Numerical Analysis (Springer, New York, 1980).

    Book  Google Scholar 

  17. L. F. Shampine and J. Kierzenka, ‘‘A BVP solver that controls residual and error,’’ J. Numer. Anal. Ind. Appl. Math. 3, 27–41 (2008).

    MathSciNet  MATH  Google Scholar 

  18. N. V. Trusov, ‘‘Application of mean field games approximation to economic processes modeling,’’ Tr. ISA RAN 68, 88–91 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author would like to express his sincere gratitude to scientific leader, corresponding member of the Russian Academy of Sciences, Doctor of Physical and Mathematical sciences, A. A. Shananin for the guidance and help with Mean Field Games and Optimal Control theory.

Funding

The work has been supported by RSF (grant 16-11-10246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Trusov.

Additional information

(Submitted by A. V. Lapin)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trusov, N.V. Numerical Solution of Mean Field Games Problems with Turnpike Effect. Lobachevskii J Math 41, 561–576 (2020). https://doi.org/10.1134/S1995080220040253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220040253

Keywords and phrases:

  • mean field games
  • optimal control
  • turnpike effect
  • numerical solution
  • monotonic schemes