Skip to main content
Log in

Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm—Liouville Problem

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The problem of finding the minimal eigenvalue and the corresponding positive eigenfunction of the nonlinear Sturm—Liouville problem for the ordinary differential equation with coefficients nonlinear depending on a spectral parameter is investigated. This problem arises in modeling the plasma of radio-frequency discharge at reduced pressures. A sufficient condition for the existence of a minimal eigenvalue and the corresponding positive eigenfunction of the nonlinear Sturm— Liouville problem is established. The original differential eigenvalue problem is approximated by the finite element method with Lagrangian finite elements of arbitrary order on a uniform grid. The error estimates of the approximate eigenvalue and the approximate positive eigenfunction to exact ones are proved. Investigations of this paper generalize well known results for the Sturm—Liouville problem with linear entrance on the spectral parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Sh. Abdullin, V. S. Zheltukhin, and N. F. Kashapov, Radio-Frequency Plasma-Jet Processing of Materials at Reduced Pressures: Theory and Practice of Applications (Izd. Kazan. Univ., Kazan, 2000) [in Russian].

    Google Scholar 

  2. V. S. Zheltukhin, S. I. Solov’ev, P. S. Solov’ev, and V. Yu. Chebakova, “Existence of solutions for electron balance problem in the stationary high-frequency induction discharges,” IOP Conf. Sen: Mater. Sci. Eng. 158,012103-1-6 (2016).

  3. V. S. Zheltukhin, S. I. Solov’ev, P. S. Solov’ev, V. Yu. Chebakova, and A. M. Sidorov, “Third type boundary conditions for steady state ambipolar diffusion equation,” IOP Conf. Sen: Mater. Sci. Eng. 158, 012102-1—4 (2016).

    Article  Google Scholar 

  4. S. I. Solov’ev, P. S. Solov’ev, and V. Yu. Chebakova, “Finite difference approximation of electron balance problem in the stationary high-frequency induction discharges,” MATEC Web Conf. 129, 06014-1—4 (2017).

    Article  Google Scholar 

  5. S. I. Solov’ev and P. S. Solov’ev, “Finite element approximation of the minimal eigenvalue of a nonlinear eigenvalue problem,” Lobachevskii J. Math. 39 (7), 949–956 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  6. S. I. Solov’ev, “ Eigenvibrations of a beam with elastically attached load,” Lobachevskii J. Math. 37 (5), 597–609 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. I. Solov’ev, “ Eigenvibrations of a bar with elastically attached load,” Differ. Equat. 53, 409–423 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. A. V. Goolin and S. V. Kartyshov, “Numerical study of stability and nonlinear eigenvalue problems,” Surv. Math. Ind. 3, 29–48 (1993).

    MathSciNet  MATH  Google Scholar 

  9. T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder, and F. Tisseur, “NLEVP: A collection of nonlinear eigenvalue problems,” ACM Trans. Math. Software 39 (2), 7 (2013).

    Google Scholar 

  10. V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations (Am. Math. Soc, Providence, 2001).

    Google Scholar 

  11. Th. Apel, A.-M. Sändig, and S. I. Solov’ev, “Computation of 3D vertex singularities for linear elasticity: error estimates for a finite element method on graded meshes,” Math. Model. Numer. Anal. 36, 1043–1070 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  12. S.I. Solov’ev, “Fast methods for solving mesh schemes of the finite element method of second order accuracy forthe Poisson equation in a rectangle,” Izv Vyssh. Uchebn. Zaved. Mat., No. 10, 71–74 (1985).

    Google Scholar 

  13. S. I. Solov’ev, “A fast direct method for solving finite element method schemes with Hermitian bicubic elements,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 8, 87–89 (1990).

    MathSciNet  MATH  Google Scholar 

  14. A. D. Lyashko and S. I. Solov’ev, “Fourier method of solution of FE systems with Hermite elements for Poisson equation,” Russ. J. Numer. Anal. Math. Model. 6, 121–130 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  15. S. I. Solov’ev, “Fast direct methods of solving finite-element grid schemes with bicubic elements for the Poisson equation,” J. Math. Sci. 71, 2799–2804 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. I. Solov’ev, “A fast direct method of solving Hermitian fourth-order finite-element schemes for the Poisson equation,” J. Math. Sci. 74, 1371–1376 (1995).

    Article  MathSciNet  Google Scholar 

  17. E. M. Karchevskii and S. I. Solov’ev, “Investigation of a spectral problem for the Helmholtz operator on the plane,” Differ. Equation. 36, 631–634 (2000).

    Article  MathSciNet  Google Scholar 

  18. A. A. Samsonov and S. I. Solov’ev, “Eigenvibrations of a beam with load,” Lobachevskii J. Math. 38 (5), 849–855 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  19. I. B. Badriev, G. Z. Garipova, M. V. Makarov, and V. N. Paymushin, “Numerical solution of the issue about geometrically nonlinear behavior of sandwich plate with transversal soft filler,” Res. J. Appl. Sci. 10, 428–435 (2015).

    Google Scholar 

  20. A. A. Samsonov, S. I. Solov’ev, and P. S. Solov’ev, “Eigenvibrations of a bar with load,” MATEC Web Conf. 129, 06013-1-4 (2017).

  21. A. A. Samsonov, S. I. Solov’ev, and P. S. Solov’ev, “Eigenvibrations of a simply supported beam with elastically attached load,” MATEC Web Conf. 224, 04012-1-6 (2018).

    Article  Google Scholar 

  22. A. A. Samsonov and S. I. Solov’ev, “Investigation of eigenvibrations of a loaded bar,” MATEC Web Conf. 224, 04013-1-5 (2018).

    Article  Google Scholar 

  23. A. A. Samsonov, S. I. Solov’ev, and P. S. Solov’ev, “Finite element modeling of eigenvibrations of a bar with elastically attached load,” AIP Conf. Proc. 2053, 040082-1-4 (2018).

  24. A. A. Samsonov and S. I. Solov’ev, “Investigation of eigenvibrations of a simply supported beam with load,” AIP Conf. Proc. 2053, 040083-1-4 (2018).

  25. A. A. Samsonov, D. M. Korosteleva, and S. I. Solov’ev, “Approximation of the eigenvalue problem on eigenvibration of a loaded bar,” J. Phys.: Conf. Se. 1158, 042009-1-5 (2019).

    Google Scholar 

  26. A. A. Samsonov, D. M. Korosteleva, and S. I. Solov’ev, “Investigation of the eigenvalue problem on eigenvibration of a loaded string,” J. Phys.: Conf. Se. 1158, 042010-1—5 (2019).

    Google Scholar 

  27. A. V. Gulin and A. V. Kregzhde, “On the applicability of the bisection method to solve nonlinear difference Eigenvalue problems,” Preprint No. 8 (Inst. Appl. Math., USSR Science Academy, Moscow, 1982).

  28. A. V. Gulin and S. A. Yakovleva, “On a numerical solution of a nonlinear eigenvalue problem,” in Computational Processes and Systems (Nauka, Moscow, 1988), Vol. 6, pp. 90–97 [in Russian].

    MathSciNet  MATH  Google Scholar 

  29. R. Z. Dautov, A. D. Lyashko, and S. I. Solov’ev, “The bisection method for symmetric eigenvalue problems with a parameter entering nonlinearly,” Russ. J. Numer. Anal. Math. Model. 9, 417–427 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Ruhe, “Algorithms for the nonlinear eigenvalue problem,” SIAM J. Numer. Anal. 10, 674–689 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Tisseur and K. Meerbergen, “ The quadratic eigenvalue problem,” SIAM Rev. 43, 235–286 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  32. V. Mehrmann and H. Voss, “ Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods,” GAMM-Mit. 27, 1029–1051 (2004).

    MathSciNet  MATH  Google Scholar 

  33. S. I. Solov’ev, “Preconditioned iterative methods fora class of nonlinear eigenvalue problems,” Linear Algebra Appl. 415, 210–229 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  34. D. Kressner, “A block Newton method for nonlinear eigenvalue problems,” Numer. Math. 114, 355–372 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  35. X. Huang, Z. Bai, and Y. Su, “ Nonlinear rank-one modification of the symetric eigenvalue problem,” J. Comput. Math. 28, 218–234 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Schwetlick and K. Schreiber, “Nonlinear Rayleigh functionals,” Linear Algebra Appl. 436, 3991–4016 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  37. W.-J. Beyn, “An integral method for solving nonlinear eigenvalue problems,” Linear Algebra Appl. 436, 3839–3863 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Leblanc and A. Lavie, “ Solving acoustic nonlinear eigenvalue problems with a contour integral method,” Eng. Anal. Bound. Elem. 37, 162–166 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  39. X. Qian, L. Wang, and Y. Song, “ A successive quadratic approximations method for nonlinear eigenvalue problems,” J. Comput. Appl. Math. 290, 268–277 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  40. A. A. Samsonov, P. S. Solov’ev, and S. I. Solov’ev, “The bisection method for solving the nonlinear bar eigenvalue problem,” J. Phys.: Conf. Se. 1158, 042011-1-5 (2019).

    Google Scholar 

  41. A. A. Samsonov, P. S. Solov’ev, and S. I. Solov’ev, “Spectrum division for eigenvalue problems with nonlinear dependence on the parameter,” J. Phys.: Conf. Se. 1158, 042012-1—5 (2019).

    Google Scholar 

  42. A. V. Gulin and A. V. Kregzhde, “Difference schemes for some nonlinear spectral problems,” KIAM Preprint No. 153 (Keldysh Inst. Appl. Math., USSR Science Academy, Moscow, 1981).

  43. A. V. Kregzhde, “On difference schemes for the nonlinear Sturm—Liouville problem,” Differ. Uravn. 17, 1280–1284 (1981).

    MathSciNet  Google Scholar 

  44. S. I. Solov’ev and P. S. Solov’ev, “Error estimates of the finite difference method for eigenvalue problems with nonlinear entrance of the spectral parameter,” J. Phys.: Conf. Sen 158, 042020-1—5 (2019).

    Google Scholar 

  45. A. A. Samsonov, P. S. Solov’ev, and S. I. Solov’ev, “Error investigation of a finite element approximation for a nonlinear Sturm—Liouville problem,” Lobachevskii J. Math. 39 (7), 1460–1465 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  46. R. Z. Dautov, A. D. Lyashko, and S. I. Solov’ev, “Convergence of the Bubnov—Galerkin method with perturbations for symmetric spectral problems with parameter entering nonlinearly,” Differ. Equat. 27, 799–806 (1991).

    MATH  Google Scholar 

  47. S. I. Solov’ev, “The error of the Bubnov—Galerkin method with perturbations for symmetric spectral problems with a non-linearly occurring parameter,” Comput. Math. Math. Phys. 32, 579–593 (1992).

    MathSciNet  MATH  Google Scholar 

  48. S. I. Solov’ev, “Approximation of differential eigenvalue problems with a nonlinear dependence on the parameter,” Differ. Equation. 50, 947–954 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. I. Solov’ev, “ Superconvergence of finite element approximations of eigenfunctions,” Differ. Equat. 30, 1138–1146 (1994).

    MathSciNet  MATH  Google Scholar 

  50. S. I. Solov’ev, “ Superconvergence of finite element approximations to eigenspaces,” Differ. Equat. 38, 752–753 (2002).

    Article  MATH  Google Scholar 

  51. S. I. Solov’ev, “Approximation of differential eigenvalue problems,” Differ. Equat. 49, 908–916 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  52. S. I. Solov’ev, “Finite element approximation with numerical integration for differential eigenvalue problems,” Appl. Numer. Math. 93, 206–214 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  53. S. I. Solov’ev and P. S. Solov’ev, “Error estimates of the quadrature finite element method with biquadratic finite elements for elliptic eigenvalue problems in the square domain,” J. Phys.: Conf. Se. 1158, 042021 -1—5 (2019).

    Google Scholar 

  54. S. I. Solov’ev, “Approximation of nonlinear spectral problems in a Hilbert space,” Differ. Equat. 51, 934–947 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  55. S. I. Solov’ev, “Approximation of variational eigenvalue problems,” Differ. Equat. 46, 1030–1041 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  56. S. I. Solov’ev, “Approximation of positive semidefinite spectral problems,” Differ. Equat. 47, 1188–1196 (2011).

    Article  MATH  Google Scholar 

  57. S. I. Solov’ev, “Approximation of sign-indefinite spectral problems,” Differ. Equat. 48, 1028–1041 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  58. S. I. Solov’ev, “Approximation of operator eigenvalue problems in a Hilbert space,” IOP Conf. Sen: Mater. Sci. Eng. 158, 012087-1-6 (2016).

  59. S. I. Solov’ev, “Quadrature finite element method for elliptic eigenvalue problems,” Lobachevskii J. Math. 38 (5), 856–863 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  60. I. B. Badriev, V. V. Banderov, and O. A. Zadvornov, “On the equilibrium problem of a soft network shell in the presence of several point loads,” Appl. Mech. Mater. 392, 188–190 (2013).

    Article  Google Scholar 

  61. I. B. Badriev, M. V. Makarov, and V. N. Paimushin, “Geometrically nonlinear problem of longitudinal and transverse bending of a sandwich plate with transversally soft core,” Lobachevskii J. Math. 392(5), 448–457 (2018).

    Article  MathSciNet  Google Scholar 

  62. I. B. Badriev, V. V. Banderov, and M. V. Makarov, “Mathematical simulation of the problem of the pre-critical sandwich plate bending in geometrically nonlinear one dimensional formulation,” IOP Conf. Sen: Mater. Sci. Eng. 208, 012002 (2017).

    Article  Google Scholar 

  63. I. B. Badriev, M. V. Makarov, and V. N. Paimushin, “Numerical investigation of a physically nonlinear problem of the longitudinal bending of the sandwich plate with a transversal-soft core,” PNRPU Mech. Bull., No. 1, 39–51 (2017).

    Google Scholar 

  64. I. B. Badriev, V. V. Banderov, E. E. Lavrentyeva, and O. V. Pankratova, “On the finite element approximations of mixed variational inequalities of filtration theory,” IOP Conf. Sen: Mater. Sci. Eng. 158, 012012 (2016).

    Article  Google Scholar 

  65. I. B. Badriev, “On the solving of variational inequalities of stationary problems of two-phase flow in porous media,” Appl. Mech. Mater. 392, 183–187 (2013).

    Article  Google Scholar 

  66. I. B. Badriev, O. A. Zadvornov, and A. D. Lyashko, “A study of variable step iterative methods for variational inequalities of the second kind,” Differ. Equat. 40, 971–983 (2004).

    Article  MATH  Google Scholar 

Download references

Funding

This work was supported by Russian Science Foundation, project no. 16-11-10299.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. M. Korosteleva, P. S. Solov’ev or S. I. Solov’ev.

Additional information

Submitted by A. V. Lapin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korosteleva, D.M., Solov’ev, P.S. & Solov’ev, S.I. Finite Element Approximation of the Minimal Eigenvalue and the Corresponding Positive Eigenfunction of a Nonlinear Sturm—Liouville Problem. Lobachevskii J Math 40, 1959–1966 (2019). https://doi.org/10.1134/S1995080219110179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219110179

Keywords and phrases

Navigation