Skip to main content
Log in

Approximate Analytical Solution for a Unilateral Contact Problem with Heavy Elastica

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The non-linear bending of slender heavy beam resting on rigid plane and subjected to the end point force is studied. Solution of the problem is derived by using series expansion technique. Approximate closed-form analytical solution for the length of the separated segment of elastica is found. It is shown that obtained simple solution can be used as the approximate lower bound for the evaluation of the force that should be applied to the beam’s end to provide the prescribed length of separation, while the known classical solution of linear theory can be used as the upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Gere and S. Timoshenko, Mechanics of Materials (Cole, Pacific Grove, CA, 2001).

    Google Scholar 

  2. R. Frisch-Fay, Flexible Bars (Butterworths, London, 1962).

    MATH  Google Scholar 

  3. J. T. Holden, “On the finite deflections of thin beams,” Int. J. Solids Struct. 8, 1051–1055 1972.

    Article  MATH  Google Scholar 

  4. A. Banerjee, B. Bhattacharya, and A. K. Mallik “Large deflection of cantilever beams with geometric non-linearity: analytical and numerical approaches,” Int. J. Non-Lin. Mech. 43, 366–376 (2008).

    Article  MATH  Google Scholar 

  5. L. F. Campanile and A. Hasse, “A simple and effective solution of the elastica problem approach,” Proc. Inst. Mech. Eng., Part C 222, 2513–2516 2008.

    Article  Google Scholar 

  6. L. Chen, “An integral approach for large deflection cantilever beams,” Int. J. Non-Lin. Mech. 45, 301–305 2010.

    Article  Google Scholar 

  7. A. Humer and H. Irschik, “Large deformation and stability of an extensible elastica with an unknown length,” Int. J. Solids Struct. 48, 1301–1310 2011.

    Article  MATH  Google Scholar 

  8. L. F. Campanile, R. Jähne, and A. Hasse, “Exact analysis of the bending of wide beams by a modified elastica approach,” Proc. Inst. Mech. Eng., Part C 255, 2759–2764 2011.

    Google Scholar 

  9. E. Turco, “Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica,” Continuum Mech. Thermodyn., 1–19 (2018).

  10. F. Rohde, “Large deflections of a cantilever beam with uniformly distributed load,” Quart. Appl. Math. 11, 337–338 1953.

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Y. Wang, “A critical review of the heavy elastica,” Int. J. Mech. Sci. 28, 549–559 1986.

    Article  Google Scholar 

  12. B. W. Kooi and M. Kuipers, “A unilateral contact problem with the heavy elastica,” Int. J. Non-Lin. Mech. 19, 309–321 1984.

    Article  MATH  Google Scholar 

  13. B. W. Kooi, “A unilateral contact problem with the heavy elastica solved by use of finite elements,” Comput. Struct. 21, 95–103 1985.

    Article  Google Scholar 

  14. J. S. Chen, H. C. Li, and W. C. Ro, “Slip-through of a heavy elastica on point supports,” Int. J. Solids Struct. 47, 261–268 2010.

    Article  MATH  Google Scholar 

  15. A. Kimiaeifar, N. Tolou, A. Barari, and J. L. Herder, “Large deflection analysis of cantilever beam under end point and distributed loads,” J. Chin. Inst. Eng. 37, 438–445 2014.

    Article  Google Scholar 

  16. R. Long, N. Tolou, K. R. Shull, and C. Y. Hui, “Large deformation adhesive contact mechanics of circular membranes with a flat rigid substrate,” J. Mech. Phys. Solids 58, 1225–1242 2010.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Srivastava and C. Y. Hui, “Nonlinear viscoelastic contact mechanics of long rectangular membranes,” Proc. R. Soc. London, Ser. A 470 (2171), 20140528 (2014).

    Article  Google Scholar 

  18. A. Patil, A. DasGupta, and A. Eriksson, “Contact mechanics of a circular membrane inflated against a deformable substrate,” Int. J. Solids Struct. 67, 250–262 2015.

    Article  Google Scholar 

  19. F. Essenburg, “On surface constraints in plate problems,” J. Appl. Mech. 29, 340–344 1962.

    Article  MATH  Google Scholar 

  20. E. Grigolyuk and V. Tolkachev, Contact Problems in the Theory of Plates and Shells (Imported Pubn., 1987).

  21. V. I. Feodosyev, Selected Problems and Questions in Strength of Materials (Mir, Moscow, 1983).

    MATH  Google Scholar 

  22. J. H. Kim, Y. J. Ahn, Y. H. Jang, and J. R. Barber, “Contact problems involving beams,” Int. J. Solids Struct. 51, 4435–4439 2014.

    Article  Google Scholar 

  23. E. Lomakin, L. Rabinskiy, V. Radchenko, Y. Solyaev, S. Zhavoronok, and A. Babaytsev, “Analytical estimates of the contact zone area for a pressurized flat-oval cylindrical shell placed between two parallel rigid plates,” Mecanica 53, 3831–3838 2018.

    Article  MathSciNet  Google Scholar 

Download references

Funding

The study has been funded by basic program AAAA-A19-119012290177-0 of the Institute of Applied Mechanics of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. Solyaev, A. Ustenko or E. Lykosova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solyaev, Y., Ustenko, A. & Lykosova, E. Approximate Analytical Solution for a Unilateral Contact Problem with Heavy Elastica. Lobachevskii J Math 40, 1010–1015 (2019). https://doi.org/10.1134/S1995080219070163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219070163

Keywords and phrases

Navigation