Skip to main content
Log in

On the Problem of Eigenvalues of Material Tensor Objects and Wave Velocities

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We formulate the eigenvalue problem for a tensor-block matrix of any order and of any even rank. It is well known that the eigenvalues of the tensor and the tensor-block matrix are invariant quantities. Therefore, in this work, our purpose is to find the expression for the wave velocities of some media through the eigenvalues of the material objects. In particular, the classical and micropolar materials with the different anisotropy symbols are considered, and the expressions for the wave velocities through the eigenvalues of the material objects are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Slepyan, Unsteady Elastic Waves (Sudostroenie, Leningrad, 1972) [in Russian].

    MATH  Google Scholar 

  2. G. I. Petrashen, “Fundamentals of the mathematical theory of the propagation of elastic waves,” in Questions of the Dynamic Theory of Seismic Wave Propagation (Nauka, Leningrad, 1978), p. 18 [in Russian].

    Google Scholar 

  3. V. B. Poruchikov, Methods of Dynamic Theory of Elasticity (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  4. S. L. Sobolev, “Some questions of the theory of the propagation of oscillations,” in Differential and Integral Equations of Mathematical Physics, Ed. by F Frank and R Mises (ONTI, Moscow, Leningrad, 1937) [in Russian].

    Google Scholar 

  5. H. Lamb, “On the propagation of tremors over the surface on an elastic solid,” Philos. Trans. R. Soc. London, Ser. A 203, 1 (1904).

    Article  MATH  Google Scholar 

  6. K. I. Ogurtsov and G. I. Petrashen, “Dynamic problems for an elastic half-space in the case of axial symmetry,” Uch. Zap. Leningr. Univ. 24 (149) (1951).

  7. S. L. Sobolev, “Application of the theory of plane waves to the Lamb problem,” Tr. Seismol. Inst., No. 18 (1932).

  8. E. I. Shemyakin, Dynamic Problems of the Theory of Elasticity and Plasticity (Novosib. Gos. Univ., Novosibirsk, 1968) [in Russian].

    Google Scholar 

  9. J. W. Strutt (Lord Rayleigh), The Theory of Sound (MacMillan, London, 1877), Vols. 1, 2.

    Google Scholar 

  10. S. P. Timoshenko, Fluctuations in Engineering (Fizmatgiz, Moscow, 1959) [in Russian].

    Google Scholar 

  11. Ya. S. Uflyand, “Wave propagation with transverse vibrations of rods and plates,” Prikl. Mat. Mekh. 12 (3) (1948).

  12. V. V. Novozhilov and L. I. Slepyan, “On Saint-Venant’s principle in the dynamics of rods,” Prikl. Mat. Mekh. 29 (2) (1965).

  13. I. N. Vekua, “On a calculating method of prismatic shells,” Tr. Mat. Inst. Tbilisi 21 (1955).

  14. N. A. Kilchevsky, Basics of Analytical Mechanics of Shells (Akad. Nauk USSR, Kiev, 1963) [in Russian].

    Google Scholar 

  15. U. K. Nigul, “On the methods and results of the analysis of transient wave processes of bending of an elastic plate,” Izv. Akad. Nauk Est. SSR 14 (3) (1965).

  16. W. K. Nigul and M. Kutser, “Application of the symbolic method of A. I. Lur’e in plate dynamics for deformations symmetric with respect to the middle surface,” Izv. Akad. Nauk Est. SSR 14 (3) (1965).

  17. U. K. Nigul, “Comparison of the results of the analysis of transients in shells and plates on the theory of elasticity and approximate theories,” Prikl. Mat. Mekh. 33 (2) (1969).

  18. M. U. Nikabadze, Development of the Method of Orthogonal Polynomials in the Mechanics of Micropolar and Classical Elastic Thin Bodies (Mosk. Gos. Univ., Moscow, 2014) [in Russian]. https://istina.msu.ru/publications/book/6738800/.

    Google Scholar 

  19. G. Rosi, L. Placidi, and F. dell’Isola, “First and slow pressure waves electrically induced by nonlinear coupling in Biot-type porous medium saturated by a nematic liquid crystal,” Zeitschr. Angew. Math. Phys. 68 (51) (2017). doi https://doi.org/10.1007/s00033-017-0795-7

  20. F. dell’Isola, A. Madeo, and L. Placidi, “Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua,” Zeitschr. Angew. Math. Mech. 92, 52–71 2012.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Rosi and N. Auffrey, “Anisotropic and dispersive wave propagation within strain-gradient framework,” Wave Motion 63, 120–134 2016.

    Article  Google Scholar 

  22. M. U. Nikabadze, “Topics on tensor calculus with applications to mechanics,” J. Math. Sci. 225 (1) (2017). doi https://doi.org/10.1007/s10958-017-3467-4

  23. I. N. Vekua, Basics of Tensor Analysis and Covariant Theory (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  24. M. U. Nikabadze, “On some questions of tensor calculus with applications to mechanics,” Sovrem. Mat. Fundam. Napravl. 55, 3–194 (2015). http://istina.msu.ru/media/publications/book/e25/00c/10117043/M.U.Nikabadze.pdf.

    Google Scholar 

  25. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, and T. V. Burchuladze, “Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity,” North-Holland Ser. Appl. Math. Mech. 25, 1–929 1979.

    MathSciNet  Google Scholar 

  26. W. Nowacki, Theory of Asymmetric Elasticity (Pergamon, Oxford, 1986; Mir, Moscow, 1975).

    MATH  Google Scholar 

  27. A. C. Eringen, Microcontinuum Field Theories. I. Foundations and Solids (Springer, New York, 1999).

    Book  MATH  Google Scholar 

  28. M. U. Nikabadze and A. R. Ulukhanyan, “Analytical solutions in the theory of thin bodies,”, in Generalized Continua as Models for Classical and Advanced Materials, Adv. Struct. Mater. 42, 319–361 (2016). doi https://doi.org/10.1007/978-3-319-31721-2_15

    Article  Google Scholar 

  29. M. U. Nikabadze, “Some issues concerning a version of the theory of thin solids based on expansions in a system of Chebyshev polynomials of the second kind,” Mech. Solids 42, 391–421 2007.

    Article  Google Scholar 

  30. V. A. Baskakov, N. P. Bestuzheva, and N. A. Konchakova, Linear Dynamic Theory of Thermoelastic Media with a Microstructure (VGTU, Voronezh, 2001) [in Russian].

    Google Scholar 

  31. M. U. Nikabadze, “Construction of eigentensor columns in the linear micropolar theory of elasticity,” Moscow Univ. Mech. Bull. 69, 1–9 (2014). doi https://doi.org/10.3103/S0027133014010014

    Article  MATH  Google Scholar 

  32. M. U. Nikabadze, “Eigenvalue problems of a tensor and a tensor-block matrix (TMB) of any even rank with some applications in mechanics,” in Generalized Continua as Models for Classical and Advanced Materials, Adv. Struct. Mater. 42, 279–317 (2016). doi https://doi.org/10.1007/978-3-319-31721-2_14

    Article  MathSciNet  Google Scholar 

  33. M. U. Nikabadze, “To the problem of decomposition of the initial boundary value problems in mechanics,” J. Phys.: Conf. Ser. 936, 1–11 (2017). doi https://doi.org/10.1088/1742-6596/936/1/012056

    Google Scholar 

  34. M. U. Nikabadze, “Eigenvalue problem for tensors of even rank and its applications in mechanics,” J. Math. Sci. 221, 174–204 (2017). doi https://doi.org/10.1007/s10958-017-3226-6

    Article  MathSciNet  MATH  Google Scholar 

  35. M. U. Nikabadze, “An eigenvalue problem for tensors used in mechanics and the number of independent Saint-Venant strain compatibility conditions,” Mosc. Univ. Mech. Bull. 72, 66–69 (2017). doi https://doi.org/10.3103/S0027133017030037

    Article  MATH  Google Scholar 

  36. H. A. Matevossian, M. U. Nikabadze, and A. R. Ulukhanian, “Determination of velocities of wave propagation in some media through the eigenvalues of the material tensors,” J. Phys.: Conf. Ser. 1141, 012154 (2018). doi https://doi.org/10.1088/1742-6596/1141/1/012154

    Google Scholar 

  37. S. Lurie, H. Matevossian, M. Nikabadze, and A. Ulukhanian, “The problem of eigenvalues of material tensor objectives and velocities of wave propagation,” in Proceedings of International ScientificConference on Related Problems of Continuum Mechanics, 2018, pp. 40–56.

  38. S. A. Lurie, P. A. Belov, and L. N. Rabinskiy, “Model of media with conserved dislocation. Special cases: Cosserat model, aero-Kuvshinskii media model, porous media model,” in Advances in Mechanics of Microstructured Media and Structures, Adv. Struct. Mater. 87, 215–249 (2018).

    Article  Google Scholar 

  39. S. C. Cowin and J. W. Nunziato, “Linear elastic materials with voids,” J. Elast. 13, 125–147 1983.

    Article  MATH  Google Scholar 

  40. F. Dell’Isola and D. Steigmann, “A two-dimensional gradient-elasticity theory for woven fabrics,” J. Elast. 118, 113–125 2015.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. A. Lurie, A. L. Kalamkarov, Y. O. Solyaev, A. D. Ustenko, and A. V. Volkov, “Continuum micro-dilatation modeling of auxetic metamaterials,” Int. J. Solids Struct. 132–133, 188–200 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by Shota Rustaveli National Science Foundation (project no. DI-2016-41) and the Russian Foundation for Basic Research (project no. 18-29-10085-mk).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Nikabadze, S. Lurie, H. Matevossian or A. Ulukhanyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikabadze, M., Lurie, S., Matevossian, H. et al. On the Problem of Eigenvalues of Material Tensor Objects and Wave Velocities. Lobachevskii J Math 40, 992–1009 (2019). https://doi.org/10.1134/S1995080219070151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219070151

Keywords and phrases

Navigation