Skip to main content
Log in

Analytical Solution of Fractional Burgers-Huxley Equations via Residual Power Series Method

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper is aimed at constructing fractional power series (FPS) solutions of fractional Burgers-Huxley equations using residual power series method (RPSM). RPSM is combining Taylor’s formula series with residual error function. The solutions of our equation are computed in the form of rapidly convergent series with easily calculable components using Mathematica software package. Numerical simulations of the results are depicted through different graphical representations and tables showing that present scheme are reliable and powerful in finding the numerical solutions of fractional Burgers-Huxley equations. The numerical results reveal that the RPSM is very effective, convenient and quite accurate to time dependence kind of nonlinear equations. It is predicted that the RPSM can be found widely applicable in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. B. Oldham and J. Spanier, The Fractional Calculus (Academic, New York, 1974).

    MATH  Google Scholar 

  2. A. M. Lopes, J. A. T. Machado, C. M. A. Pinto, and A. M. S. F. Galhano, “Fractional dynamics and MDS visualization of earthquake phenomena,” Comput. Math. Appl. 66, 647–658 (2013).

    Article  MathSciNet  Google Scholar 

  3. H. Beyer and S. Kempfle, “Definition of physical consistent damping laws with fractional derivatives,” Z. Angew. Math. Mech. 75, 623–635 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. H. He, “Some applications of nonlinear fractional differential equations and their approximations,” Sci. Technol. Soc. 15, 86–90 (1999).

    Google Scholar 

  5. M. Caputo, “Linear models of dissipation whose Q is almost frequency independent-II,” Geophys. J. Int. 13, 529–539 (1967).

    Article  Google Scholar 

  6. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods (World Scientific, Singapore, 2009).

    MATH  Google Scholar 

  7. G. M. Zaslavsky, “Chaos fractional kinetics and anomalous transport,” Phys. Rep. 371, 461–580 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Hirota, “Exact enve lope-soliton solutions of a non linear wave,” J. Math. Phys. 14, 805–809 (1973).

    Article  MATH  Google Scholar 

  9. S. Kumar, D. Kumar, and J. Singh, “Numerical computation of fractional Black-Scholes equation arising in nancial market,” Egypt. J. Basic Appl. Sci. 1, 177–183 (2014).

    Article  Google Scholar 

  10. W. Maliet, “The tanh method: a tool for solving certain classes of nonlinear evolution and wave equations,” J. Comput. Appl. Math. 164, 529–541 (2004).

    Article  MathSciNet  Google Scholar 

  11. V. S. Erturk, S. Momani, and Z. Odibat, “Application of generalized differential transform method to multi-order fractional differential equations,” Commun. Nonlin. Sci. Numer. Simul. 13, 1642–1654 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  12. Z. Odibat, C. Bertelle, M. A. Aziz-Alaoui, and G. Duchamp, “A multi-step differential transform method and application to non-chaotic or chaotic systems,” Comput. Math. Appl. 59, 1462–1472 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. Q. Wang, “Homotopy perturbation method for fractional order KdV equation,” Appl. Math. Comput. 190, 1795–1802 (2007).

    MathSciNet  MATH  Google Scholar 

  14. S. Momani and Z. Odibat, “Homotopy perturbation method for nonlinear partial differential equations of fractional order,” Phys. Lett. A 365, 345–350 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Zurigat, “Solving nonlinear fractional differential equation using a multi-step Laplace-Adomian decomposition method,” Ann. Univ. Craiova, Math. Comput. Sci. Ser. 39, 162–172 (2012).

    MathSciNet  MATH  Google Scholar 

  16. S. M. El-Sayed and D. Kaya, “Exact and numerical traveling wave solutions of Whitham Broer-Kaup equations,” Appl. Math. Comput. 167, 1339–1349 (2005).

    MathSciNet  MATH  Google Scholar 

  17. M. Rafei and H. Daniali, “Application of the variational iteration method to the Whitham Broer-Kaup equations,” Comput. Math. Appl. 54, 1079–1085 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Freihat, M. Zurigat, and A. H. Handam, “The multi-step homotopy analysis method for modified epidemiological model for computer viruses,” Afrika Math. 26, 585–596 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. H. Handam, A. A. Freihat, and M. Zurigat, “The multi-step homotopy analysis method for solving fractional-order model for HIV infection of CD4+ T cells,” Proyecc. J. Math. 34, 307–322 (2015).

    MATH  Google Scholar 

  20. M. Zurigat, A. A. Freihat, and A. H. Handam, “The multi-step homotopy analysis method for solving the Jaulent-Miodek equations,” Proyecc. J. Math. 34, 45–54 (2015).

    MathSciNet  MATH  Google Scholar 

  21. S. Haq and M. Ishaq, “Solution of coupled Whitham-Broer-Kaup equations using optimal homotopy asymptotic method,” Ocean Eng. 84, 81–88 (2014).

    Article  Google Scholar 

  22. R. B. Albadarneh, I. M. Batiha, and M. Zurigat, “Numerical solutions for linear fractional differential equations of order using finite difference method (FFDM),” J. Math. Comput. Sci. 16, 103–111 (2016).

    Article  Google Scholar 

  23. O. Abu Arqub, “Series solution of fuzzy differential equations under strongly generalized differentiability,” J. Adv. Res. Appl. Math. 5, 31–52 (2013).

    Article  MathSciNet  Google Scholar 

  24. M. Alquran, “Analytical solutions of fractional foam drainage equation by residual power series method,” Math. Sci. 8, 153–160 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Alquran, “Analytical solutions of time-fractional two-component evolutionary system of order 2 by residual power series method,” J. Appl. Anal. Comput. 5, 589–599 (2015).

    MathSciNet  Google Scholar 

  26. O. Abu Arqub, A. EI-Ajou, Z. Al Zhour, and S. Momani, “Multiple solutions of nonlinear boundary value problems of fractional order: a new analytic iterative technique,” Entropy 16, 471–493 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Freihet or M. Zuriqat.

Additional information

(Submitted by E. K. Lipachev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freihet, A.A., Zuriqat, M. Analytical Solution of Fractional Burgers-Huxley Equations via Residual Power Series Method. Lobachevskii J Math 40, 174–182 (2019). https://doi.org/10.1134/S1995080219020082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219020082

Keywords and phrases

Navigation