Skip to main content
Log in

Electromagnetic Guided Waves in a Lossless Cubic-Quintic Nonlinear Waveguide

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Paper focuses on the problem of transverse-electric wave propagation in a lossless cubic-quintic nonlinear waveguide. Using an original tool, we study the problem in detail avoiding the use of special functions. It is shown that a waveguide filled with cubic-quintic nonlinear medium supports infinitely many guided waves in the focusing case. The found solutions are split into a finite number of waves having linear counterparts and an infinite number of waves that stay away from any solution to the corresponding linear problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. N. Eleonskii, L. G. Oganes’yants, and V. P. Silin, “Cylindrical nonlinear waveguides,” Sov. Phys. JETP 35, 44–47 (1972).

    Google Scholar 

  2. A. D. Boardman, P. Egan, F. Lederer, U. Langbein, and D. Mihalache, Third-Order Nonlinear Electromagnetic TE and TM Guided Waves (Elsevier Scientific, North-Holland, Amsterdam etc., 1991).

    Book  Google Scholar 

  3. A. D. Boardman and P. Egan, “Novel nonlinear surface and guided te waves in asymmetric lhm waveguides,” J. Opt. A: Pure Appl. Opt. 11, 114032 (2009).

    Article  Google Scholar 

  4. S. J. Al-Bader and H. A. Jamid, “Guided waves in nonlinear saturable self-focusing thin films,” IEEE J. Quantum Electron. 23, 1947–1955 (1987).

    Article  Google Scholar 

  5. R. I. Joseph and D. N. Christodoulides, “Exact field decomposition for tm waves in nonlinear media,” Opt. Lett. 12, 826–828 (1987).

    Article  Google Scholar 

  6. D. Mihalache, R. G. Nazmitdinov, V. K. Fedyanin, and R. P. Wang, “Nonlinear guided waves in planar structures,” Phys. Part. Nucl. 23, 52 (1992).http://www1. jinr. ru/Archive/Pepan/1992-v23/v-23-1/4. htm.

    Google Scholar 

  7. H. W. Schürmann, “On the theory of TE-polarized waves guided by a nonlinear three-layer structure,” Z. Phys. B 97, 515–522 (1995).

    Article  Google Scholar 

  8. H. W. Schürmann, V. S. Serov, and Yu. V. Shestopalov, “TE-polarized waves guided by a lossless nonlinear three-layer structure,” Phys. Rev. E 58, 1040–1050 (1998).

    Article  Google Scholar 

  9. H. W. Schürmann and V. S. Serov, “Theory of TE-polarizedwaves in a lossless cubic-quintic nonlinear planar waveguide,” Phys. Rev. A 93, 063802 (2016).

    Article  Google Scholar 

  10. D. V. Valovik, “On the existence of infinitely many nonperturbative solutions in a transmission eigenvalue problem for nonlinear Helmholtz equation with polynomial nonlinearity,” Appl. Math. Model. 53, 296–309 (2018).

    Article  MathSciNet  Google Scholar 

  11. D. V. Valovik, “On spectral properties of the Sturm–Liouville operator with power nonlinearity,” Monatsh. Math. (2017).https://doi. org/10. 1007/s00605-017-1124-0

    Google Scholar 

  12. A. Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer Ser. Opt. Sci. 135 (2007).

  13. I. C. Khoo, “Nonlinear optics of liquid crystalline materials,” Phys. Rep. 471, 221–267 (2009).

    Article  Google Scholar 

  14. I. C. Khoo, “Nonlinear optics, active plasmonics and metamaterials with liquid crystals,” Prog. Quantum Electron. 38, 77–117 (2014).

    Article  Google Scholar 

  15. C. Schnebelin, C. Cassagne, C. B. de Araújo, and G. Boudebs, “Measurements of the third- and fifth-order optical nonlinearities of water at 532 and 1064 nm using the d4σ method,” Opt. Lett. 39, 5046–5049 (2014).

    Article  Google Scholar 

  16. A. A. Said, C. Wamsley, D. J. Hagan, E. W. van Stryland, B. A. Reinhardt, P. Roderer, and A. G. Dillard, “Third-and fifth-order optical nonlinearities in organic materials,” Chem. Phys. Lett. 228, 646–650 (1994).

    Article  Google Scholar 

  17. Chuanlang Zhan, Deqing Zhang, and Daoben Zhu, “Third- and fifth-order optical nonlinearities in a new stilbazolium derivative,” J. Opt. Soc. Am. B 19, 369–375 (2002).

    Article  Google Scholar 

  18. R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M. Suzuki, M. Turu, and H. Kuroda, “Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm,” J. Opt. A: Pure Appl. Opt. 6, 282–287 (2004).

    Article  Google Scholar 

  19. Yi-Fan Chen, K. Beckwitt, F. W. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order nonlinearities of glasses,” J. Opt. Soc. Am. B 23, 347–352 (2006).

    Article  Google Scholar 

  20. D. L. Weerawarne, X. Gao, A. L. Gaeta, and B. Shim, “Higher-order nonlinearities revisited and their effect on harmonic generation,” Phys. Rev. Lett. 114, 093901 (2015).

    Article  Google Scholar 

  21. A. S. Reyna and C. B. de Araújo, “Spatial phase modulation due to quintic and septic nonlinearities in metal colloids,” Opt. Express 22, 22456–22469 (2014).

    Article  Google Scholar 

  22. A. S. Reyna, K. C. Jorge, and C. B. de Araújo, “Two-dimensional solitons in a quintic-septimal medium,” Phys. Rev. A 90, 063835 (2014).

    Article  Google Scholar 

  23. R. W. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Prog. Quantum Electron. 5, 1–68 (1977).

    Article  Google Scholar 

  24. F. Azzouzi, H. Triki, K. Mezghiche, and A. El Akrmi, “Solitary wave solutions for high dispersive cubicquintic nonlinear Schrödinger equation,” Chaos, Solitons Fractals 39, 1304–1307 (2009).

    Article  MATH  Google Scholar 

  25. K. Y. Kolossovski, A. V. Buryak, V. V. Steblina, A. R. Champneys, and R. A. Sammut, “Higher-order nonlinear modes and bifurcation phenomena due to degenerate parametric four-wave mixing,” Phys. Rev. E 62, 4309–4317 (2000).

    Article  Google Scholar 

  26. J. Soneson and A. Peleg, “Effect of quintic nonlinearity on soliton collisions in optical fibers,” Phys. D (Amsterdam, Neth. ) 195, 123–140 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  27. Yongan Xie and Shengqiang Tang, “New exact solutions for high dispersive cubic-quintic nonlinear Schrödinger equation,” J. Appl. Math. 2014 826746 (2014).

    Google Scholar 

  28. Li-Chen Zhao, Chong Liu and Zhan-Ying Yang, “The rogue waves with quintic nonlinearity and nonlinear dispersion effects in nonlinear optical fibers,” Commun. Nonlin. Sci. Numer. Simul. 20, 9–13 (2015).

    Article  Google Scholar 

  29. M. Kerbouche, Y. Hamaizi, A. El-Akrmi, and H. Triki, “Solitary wave solutions of the cubic-quintic-septic nonlinear Schrödinger equation in fiber bragg gratings,” Optik — Int. J. Light Electron Opt. 127, 9562–9570 (2016).

    Article  Google Scholar 

  30. A. Choudhuri and K. Porsezian, “Impact of dispersion and non-Kerr nonlinearity on the modulational instability of the higher-order nonlinear Schrödinger equation,” Phys. Rev. A 85, 033820 (2012).

    Article  Google Scholar 

  31. Zhonghao Li, Lu Li, Huiping Tian, and Guosheng Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).

    Article  Google Scholar 

  32. Hang-Yu Ruan and Hui-Jun Li, “Optical solitary waves in the generalized higher order nonlinear Schrödinger equation,” J. Phys. Soc. Jpn. 74, 543–546 (2005).

    Article  MATH  Google Scholar 

  33. Yu. G. Smirnov and D. V. Valovik, “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity,” Phys. Rev. A 91, 013840 (2015).

    Article  MathSciNet  Google Scholar 

  34. D. V. Valovik, “Novel propagation regimes for te waves guided by a waveguide filled with kerr medium,” J. Nonlin. Opt. Phys. Mater. 25, 1650051 (2016).

    Article  Google Scholar 

  35. Yu. G. Smirnov and D. V. Valovik, “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell’s equations with cubic nonlinearity,” J. Math. Phys. 57, 103504 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  36. D. V. Valovik, “On the nonlinear eigenvalue problem connected with nonlinear electromagnetic wave propagation theory,” Differ. Equations 54 (2018, in press).

  37. H. K. Chiang, R. P. Kenan, and C. J. Summers, “Spurious roots in nonlinear waveguide calculations and a new format for nonlinear waveguide dispersion equations,” IEEE J. Quantum Electron. 28, 1756–1760 (1992).

    Article  Google Scholar 

  38. Y.-F. Li and K. Iizuka, “Unified nonlinear waveguide dispersion equations without spurious roots,” IEEE J. Quantum Electron. 31, 791–794 (1995).

    Article  Google Scholar 

  39. Yu. G. Smirnov and D. V. Valovik, “Reply to the comment on’ guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity’,” Phys. Rev. A 92, 057804 (2015).

    Article  Google Scholar 

  40. M. J. Adams, An Introduction to Optical Waveguides (Wiley, Chichester, New York, Brisbane, Toronto, 1981).

    Google Scholar 

  41. D. V. Valovik, “Nonlinear coupled electromagnetic wave propagation: saturable nonlinearities,” WaveMotion 60, 166–180 (2016).

    MathSciNet  Google Scholar 

  42. C. F. McCormick, D. R. Solli, R. Y. Chiao, and J. M. Hickmann, “Saturable nonlinear refraction in hot atomic vapor,” Phys. Rev. A 69, 023804 (2004).

    Article  Google Scholar 

  43. C. Breé, A. Demircan, and G. Steinmeyer, “Saturation of the all-optical Kerr effect,” Phys. Rev. Lett. 106, 183902 (2011).

    Article  Google Scholar 

  44. C. Köhler, R. Guichard, E. Lorin, S. Chelkowski, A. D. Bandrauk, L. Berge´, and S. Skupin, “Saturation of the nonlinear refractive index in atomic gases,” Phys. Rev. A 87, 043811 (2013).

    Article  Google Scholar 

  45. D. V. Valovik, “Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem,” Nonlin. Anal.: RealWorld Appl. 20, 52–58 (2014).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Raschetova.

Additional information

(Submitted by E. K. Lipachev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raschetova, D.V., Tikhov, S.V. & Valovik, D.V. Electromagnetic Guided Waves in a Lossless Cubic-Quintic Nonlinear Waveguide. Lobachevskii J Math 39, 1108–1116 (2018). https://doi.org/10.1134/S1995080218080085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080218080085

Keywords and phrases

Navigation