Lobachevskii Journal of Mathematics

, Volume 39, Issue 3, pp 340–347 | Cite as

Choquet Order and Jordan Maps

  • J. Hamhalter
  • E. Turilova


Choquet order orthogonalmeasures C*-dynamical systems invariant states 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Brateli and D. W. Robinson, Operator Algebras and Quantum StatisticalMechanics (Springer, Berlin, 1997), Vol.1.Google Scholar
  2. 2.
    K. Davidson and M. Kennedy, “Choquet order and hyperrigidity for function systems,” arXiv:1608.02334v1, 8 August 2016.Google Scholar
  3. 3.
    H. Halvorson, Deep Beauty: Understanding the Quantum World through Mathematical Innovation (Cambridge Univ. Press, Cambridge, 2011).CrossRefzbMATHGoogle Scholar
  4. 4.
    J. Hamhalter, “Isomorphisms of ordered structures of abelian C*-subalgebras of C*-subalgebras,” J.Math. Anal. Appl. 383, 391–399 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Hamhalter and E. Turilova, “Structure of associative subalgebras of Jordan operator algebras,” Quart. J. Math. 64, 397–408 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J. Hamhalter and E. Turilova, “Automorphisms of ordered structures of abelian parts of operator algebras and their role in quantum theory,” Int. J. Theor. Phys. 53, 3333–3345 (2014).CrossRefzbMATHGoogle Scholar
  7. 7.
    J. Hamhalter and E. Turilova, “Orthogonal measures on state spaces and context structures of quantum theory,” Int. J. Theor. Phys. 55, 3353–3365 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J. Hamhalter and E. Turilova, “Choquet order and Jordan morphisms of operator algebras,” Itogi Nauki Tekh., Ser.: Sovrem. Mat. Prilozh. 140, 119–124 (2017).Google Scholar
  9. 9.
    C. Heunen, N. P. Landsman, and B. Spitters, “Bohrification of operator algebras and quantum logic,” Synthese 186, 719–752 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. V. Kadison and J. R. Ringrose, Theory of Operator Alegebras I, II (Academic, New York, 1986).Google Scholar
  11. 11.
    K. Landsman, Foundations of Quantum Theory, From Classical Concepts to Operator Algebras, Vol. 188 of Fundamental Theories of Physics (Springer Int., Switzerland, 2017).zbMATHGoogle Scholar
  12. 12.
    B. Lindenhovius, PhD Thesis (Radbound Univ., Nijmegen, 2016).Google Scholar
  13. 13.
    J. Lukeš, J. Malý, I. Netuka, and J. Spurný, Integral Representation Theory, Applications to Convexity, Banach Spaces, and Potential Theory (de Gruyter, Berlin, New York, 2010).zbMATHGoogle Scholar
  14. 14.
    R. Phelps, Lectures on Choquet’s Theorem (van Nostrand, Princeton, New Jersey, 1966).zbMATHGoogle Scholar
  15. 15.
    M. Takesaki, Theory of Operator Algebras I, II, III (Springer, Berlin Heidelberg, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsCzech Technical University in Prague, Faculty of Electrical EngineeringPraha 6Czech Republic
  2. 2.Department of Mathematical Statistics, Institute of Computational Mathematics and Information TechnologiesKazan Federal UniversityKazanRussia

Personalised recommendations