Lobachevskii Journal of Mathematics

, Volume 39, Issue 3, pp 355–367 | Cite as

Firefly Algorithm for Supply Chain Optimization

  • Mariam Elkhechafi
  • Zoubida Benmamoun
  • Hanaa Hachimi
  • Aouatif Amine
  • Youssfi Elkettani


The firefly algorithm is one of the best latest bio-inspired algorithms, which proved its performance in solving continuous and discrete optimization problems. This paper presents a more detailed comparison study using a set of test functions. The main goal is the application of Firefly algorithm (FA) to solve Lot size optimization in supply chain management which is the most complex part of stock management process. A complexity that comes from the conflict between the minimization of the costs and the maximization of the level of service. For these reason, the traditional methods of lot size control have to deal with the explosion of new needs related to supply chain evolution. The optimal solutions obtained by FA are far better than the best solutions obtained by deterministic methods analyzed in the literature.


Optimization Metaheuristics Lot Size Supply Chain Firefly algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. T. Hazen, C. A. Boone, J. D. Ezell, and L. A. Jones-Farmer, “Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications,” Int. J. Product. Econ. 154, 72–80 (2014).CrossRefGoogle Scholar
  2. 2.
    H. Stadtler, “Supply chain management: an overview,” in Supply Chain Management and Advanced Planning (Springer, Berlin, Heidelberg, 2015), pp. 3–28.Google Scholar
  3. 3.
    L. E. Crdenas-Barrin, K. J. Chung, and G. Trevio-Garza, “Celebrating a century of the economic order quantity model in honor of Ford Whitman Harris,” Int. J. Product. Econ. 155 (2014).Google Scholar
  4. 4.
    A. R. Memon and T. Kinder, “Changing management roles in the Scottish NHS: implications for management learning and development,” PublicMoneyManage. 36, 47–54 (2016).Google Scholar
  5. 5.
    I. Moon, E. Shin, and B. Sarkar, “Minmax distribution free continuous-review model with a service level constraint and variable lead time,” Appl.Math. Comput. 229, 310–315 (2014).MathSciNetzbMATHGoogle Scholar
  6. 6.
    W. Takken and N. O. Verhulst, “Host preferences of blood-feeding mosquitoes,” Ann. Rev. Entomol. 58, 433–453 (2013).CrossRefGoogle Scholar
  7. 7.
    M. Elkhechafi, H. Hachimi, A. Amine, et al., “Construction of a novel water quality classifier: a case study in the Sebou region,” Int. J. Appl.Math. Stat. 56 (5), 141–158 (2017).Google Scholar
  8. 8.
    B. Huang, R. Jiang, and G. Zhang, “Search strategy for scheduling flexible manufacturing systems simultaneously using admissible heuristic functions and nonadmissible heuristic functions,” Comput. Ind. Eng. 71, 21–26 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Mousavi, G. Gigerenzer, and R. Kheirandish, “Rethinking behavioral economics through fast-and-frugal heuristics,” in Routledge Handbook of Behavioral Economics, Ed. by R. Frantz, S.-H. Chen, K. Dopfer, F. Heukelom, and S. Mousavi (Routledge, London, 2016), pp. 280–296.Google Scholar
  10. 10.
    S. Karthikeyan, P. Asokan, S. Nickolas, and T. Page, “A hybrid discrete firefly algorithm for solving multiobjective flexible job shop scheduling problems,” Int. J. Bio-Inspired Comput. 7, 386–401 (2015).CrossRefGoogle Scholar
  11. 11.
    M. Younes, F. Khodja, and R. L. Kherfane, “Multi-objective economic emission dispatch solution using hybrid FA (firefly algorithm) and considering wind power penetration,” Energy 67, 595–606 (2014).CrossRefGoogle Scholar
  12. 12.
    I. Fister, Jr., M. Perc, S. M. Kamal, and I. Fister, “A review of chaos-based firefly algorithms: perspectives and research challenges,” Appl.Math. Comput. 252, 155–165 (2015).MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. S. Chou and N. T. Ngo, “Modified firefly algorithm for multidimensional optimization in structural design problems,” Struct.Multidiscip. Optim. 55, 2013–2028 (2017).CrossRefGoogle Scholar
  14. 14.
    G. G. Wang, A. H. Gandomi, X. S. Yang, and A. H. Alavi, “A new hybrid method based on krill herd and cuckoo search for global optimisation tasks,” Int. J. Bio-Inspired Comput. 8, 286–299 (2016).CrossRefGoogle Scholar
  15. 15.
    G. G. Wang, A. H. Gandomi, X. Zhao, and H. C. E. Chu, “Hybridizing harmony search algorithm with cuckoo search for global numerical optimization,” Soft Comput. 20, 273–285 (2016).CrossRefGoogle Scholar
  16. 16.
    F. W. Harris, “How many parts to make at once,” Factory, Mag. Manage. 10, 135–136 (1913).Google Scholar
  17. 17.
    H. M. Wagner and T. M. Whitin, “Dynamic version of the economic lot size model,” Manage. Sci. 5, 89–96 (1958).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Karlin, “Optimal policy for dynamic inventory process with stochastic demands subject to seasonal variations,” J. Soc. Ind. Appl.Math. 8, 611–629 (1960).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    U. Rao, A. Scheller-Wolf, and S. Tayur, “Development of a rapid-response supply chain at Caterpillar,” Operat. Res. 48, 189–204 (2000).CrossRefGoogle Scholar
  20. 20.
    J. Geunes and P. M. Pardalos, “Network optimization in supply chain management and financial engineering: an annotated bibliography,” Networks 42, 66–84 (2003).MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    I. Al Kattan and A. Bin Adi, “Multi-criteria decision making on total inventory cost and technical readiness,” Int. J. Interact. Des.Manuf. 2, 137–150 (2008).CrossRefGoogle Scholar
  22. 22.
    A. Fathallah, J. Stal-Le Cardinal, J. L. Ermine, and J. C. Bocquet, “Enterprise modelling: building a product lifecycle management model as a component of the integrated vision of the enterprise,” Int. J. Interact. Des. Manuf. 4, 201–209 (2010).CrossRefGoogle Scholar
  23. 23.
    F. Xingfang and F. Juheng, “Study on the inventory optimization model of aeronautic spare parts under the condition of uncertain demand,” in Proceedings of the IEEE Conference on Business Management and Electronic Information, 2011, Vol. 5, pp. 225–228.Google Scholar
  24. 24.
    X. S. Yang, “Firefly algorithms for multimodal optimization,” in Proceedings of the International Symposium on Stochastic Algorithms (Springer, Berlin, Heidelberg, 2009), pp. 169–178.Google Scholar
  25. 25.
    X. S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications (Wiley, New York, 2010).CrossRefGoogle Scholar
  26. 26.
    H. Moslemi and M. Zandieh, “Comparisons of some improving strategies onMOPSO for multi-objective (r, Q) inventory system,” Expert Syst. Appl. 38, 12051–12057 (2011).CrossRefGoogle Scholar
  27. 27.
    L. A. Moncayo-Martunez and D. Z. Zhang, “Multi-objective ant colony optimisation: a meta-heuristic approach to supply chain design,” Int. J. Product. Econ. 131, 407–420 (2011).CrossRefGoogle Scholar
  28. 28.
    D. Z. Zhang, X. H. Liu, and S. Y. Li, “An optimization model for multi-period collaborative inventory control based on target performance management,” in Proceedings of the 16th International Conference on Computer Supported Cooperative Work in Design, 2012, pp. 930–934.Google Scholar
  29. 29.
    M. A. Mellal, S. Adjerid, E. J. Williams, and D. Benazzouz, “Optimal replacement policy for obsolete components using cuckoo optimization algorithm based-approach: dependability context,” J. Sci. Ind. Res. 71, 715–721 (2012).Google Scholar
  30. 30.
    K. Park and G. Kyung, “Optimization of total inventory cost and order fill rate in a supply chain using PSO,” Int. J. Adv.Manuf. Technol. 70, 1533–1541 (2014).CrossRefGoogle Scholar
  31. 31.
    X. Guo, C. Liu, W. Xu, H. Yuan, and M. Wang, “A prediction-based inventory optimization using data mining models,” in Proceedings of the 7th International Joint Conference on Computational Sciences and Optimization, 2014, pp. 611–615.Google Scholar
  32. 32.
    P. Fattahi, V. Hajipour, and A. Nobari, “A bi-objective continuous review inventory control model: Paretobased meta-heuristic algorithms,” Appl. Soft Comput. 32, 211–223 (2015).CrossRefGoogle Scholar
  33. 33.
    E. Topan, Z. P. Bayndr, and T. Tan, “Heuristics for multi-item two-echelon spare parts inventory control subject to aggregate and individual service measures,” Eur. J. Operat. Res. 256, 126–138 (2017).MathSciNetCrossRefGoogle Scholar
  34. 34.
    A. Cheaitou and S.A. Khan, “An integrated supplier selection and procurement planning model using product predesign and operational criteria,” Int. J. Interact. Des.Manuf. 9, 213–224 (2015).CrossRefGoogle Scholar
  35. 35.
    W. L. Bean, W. Joubert Johan, and M. K. Luhandjula, “Inventory management under uncertainty: A military application,” Comput. Ind. Eng. 96, 96–107 (2016).CrossRefGoogle Scholar
  36. 36.
    A. Srivastav and S. Agrawal, “Multi-objective optimization of hybrid backorder inventory model,” Expert Syst. Appl. 51, 76–84 (2016).CrossRefGoogle Scholar
  37. 37.
    A. Srivastav and S. Agrawal, “Multi-objective optimization of slow moving inventory system using Cuckoo search,” Intell. Autom. Soft Comput. 23, 1–7 (2017).CrossRefGoogle Scholar
  38. 38.
    A. Serrano, R. Oliva, and S. Kraiselburd, “On the cost of capital in inventory models with deterministic demand,” Int. J. Product. Econ. 183, 14–20 (2017).CrossRefGoogle Scholar
  39. 39.
    P. Garcia-Herreros, A. Agarwal, J. M. Wassick, and I. E. Grossmann, “Optimizing inventory policies in process networks under uncertainty,” Comput. Chem. Eng. 92, 256–272 (2016).CrossRefGoogle Scholar
  40. 40.
    A. K. Bhunia, A. A. Shaikh, and L. E. Crdenas-Barruin, “A partially integrated production-inventory model with interval valued inventory costs, variable demand and flexible reliability,” Appl. SoftComput. 55, 491–502 (2017).Google Scholar
  41. 41.
    S. C. Tsai and S. T. Chen, “A simulation-based multi-objective optimization framework: a case study on inventory management,” Omega 70, 148–159 (2017).CrossRefGoogle Scholar
  42. 42.
    M. Elkhechafi, H. Hachimi, and Y. Elkettani, “A newhybrid firefly with genetic,” Int. J. Manage. Appl. Sci. 3 (4), 47–51 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Mariam Elkhechafi
    • 1
  • Zoubida Benmamoun
    • 2
  • Hanaa Hachimi
    • 2
  • Aouatif Amine
    • 2
  • Youssfi Elkettani
    • 1
  1. 1.Department of MathematicsIbn Tofail University B.P 241KenitraMorocco
  2. 2.National School of Applied SsciencesIbn tofail University B.P 242KenitraMorocco

Personalised recommendations