Skip to main content
Log in

Effective Signal Extraction Via Local Polynomial Approximation Under Long-Range Dependency Conditions

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study the signal extraction problemwhere a smooth signal is to be estimated against a long-range dependent noise. We consider an approach employing local estimates and derive a theoretically optimal (maximum likelihood) filter for a polynomial signal. On its basis, we propose a practical signal extraction algorithm and adapt it to the extraction of quasi-seasonal signals. We further study the performance of the proposed signal extraction scheme in comparison with conventional methods using the numerical analysis and real-world datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Borodin and P. Salminen, Handbook of Brownian Motion–Facts and Formulae (Birkhäuser, Basel, Boston, 2012).

    MATH  Google Scholar 

  2. M. S. Keshner, “1/F noise,” Proc. IEEE 70 (3), 212–218 (1982).

    Article  Google Scholar 

  3. M. Kobayashi and T. Musha, “1/F fluctuation of heartbeat period,” IEEE Trans. Bio-Med. Eng. 26, 456–457 (1982).

    Article  Google Scholar 

  4. J. B. Johnson, “The Schottky effect in low frequency circuits,” Phys. Rev. 26, 71 (1925).

    Article  Google Scholar 

  5. Yu. L. Klimontovich, “Natural flicker noise (the “1/f noise”) and superconductivity,” JETP Lett. 51, 43–45 (1990).

    Google Scholar 

  6. W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar nature of Ethernet traffic (extended version),” IEEE/ACMTrans. Networking 2, 1–15 (1994).

    Article  Google Scholar 

  7. P. Abry and D. Veitch “Wavelet analysis of long-range-dependent traffic,” IEEE Trans. Inform. Theory 44, 2–15 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. W. Garrett and W. Willinger “Analysis, modeling and generation of self-similar VBR video traffic,” ACM SIGCOMMComput. Commun. Rev. 24, 269–280 (1994).

    Article  Google Scholar 

  9. R. F. Voss and J. Clarke “’1/f noise’ in music: music from 1/f noise,” J. Acoust. Soc. Am. 63, 258–263 (1978).

    Article  Google Scholar 

  10. U. Çetin, A. Novikov, and A. N. Shiryaev, “Bayesian sequential estimation of a drift of fractional Brownian motion,” Sequent. Anal. 32, 288–296 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Norros, E. Valkeila, and J. Virtamo, “An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions,” Bernoulli 5, 571–587 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  12. B. B. Mandelbrot and J. W. van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Rev. 10, 422–437 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. L. Kleptsyna, A. le Breton, and M.-C. Roubaud, “Parameter estimation and optimal filtering for fractional type stochastic systems,” Stat. Inference Stochast. Processes 3, 173–182 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  14. ISO/IEC/IEEE 42010:2011(E), Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000 (2011).

  15. A. Erramilli, O. Narayan, and W. Willinger, “Systems and software engineering—architecture description,” IEEE/ACMTrans. Netw. 4, 209–223 (1996).

    Article  Google Scholar 

  16. N. Yigitbasi et al., “Analysis and modeling of time-correlated failures in large-scale distributed systems,” in Proceedings of the IEEE/ACM International Workshop on Grid Computing, 2010, pp. 65–72.

    Google Scholar 

  17. M. M. Dubovikov, N. V. Starchenko, and M. S. Dubovikov, “Dimension of the minimal cover and fractal analysis of time series,” Phys. A (Amsterdam, Neth.) 339, 591–608 (2004).

    Article  MathSciNet  Google Scholar 

  18. H. E. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civil Eng. 116, 770–808 (1951).

    Google Scholar 

  19. L. Kirichenko, T. Radivilova, and Zh. Deineko, “Comparative analysis for estimating of the Hurst exponent for stationary and nonstationary time series,” Inform. Technol. Knowledge 5, 371–388 (2011).

    Google Scholar 

  20. R. Hardstone et al., “Detrended fluctuation analysis: a scale-free view on neuronal oscillations,” Front. Physiol. 3, 450 (2012).

    Article  Google Scholar 

  21. A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic anomalies,” ACM SIGCOMM Comput. Commun. Rev. 34, 219 (2004).

    Article  Google Scholar 

  22. P. Casas, S. Vaton, L. Fillatre, and I. Nikiforov, “Optimal volume anomaly detection and isolation in largescale IP networks using coarse-grained measurements,” Comput. Networks 54, 1750–1766 (2010).

    Article  MATH  Google Scholar 

  23. R. Vautard, P. Yiou, and M. Ghil, “Singular-spectrum analysis: a toolkit for short, noisy chaotic signals,” Phys. D (Amsterdam, Neth.) 58, 95–126 (1992).

    Article  Google Scholar 

  24. P. R. Winters, “Forecasting sales by exponentially weighted moving averages,” Manage. Sci. 6, 324–342 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. F. Findley et al., “New capabilities and methods of the X-1 2-ARIMA seasonal-adjustment program,” J. Business Econ. Stat. 16, 127–152 (1998).

    Google Scholar 

  26. R. J. Hodrick and E. C. Prescott, “PostwarUS business cycles: an empirical investigation,” J. Money, Credit, Banking, 1–16 (1997).

    Google Scholar 

  27. V. Dordonnat et al., “An hourly periodic state space model for modelling French national electricity load,” Int. J. Forecast. 24, 566–587 (2008).

    Article  Google Scholar 

  28. A. V. Artemov, E. V. Burnaev, and A. S. Lokot, “Nonparametric decomposition of quasi-periodic time series for change-point detection,” in Proceedings of the 8th International Conference onMachine Vision, Nov. 19–20, 2015, Barcelona, Spain, pp. 987520–987520. doi 10.1117/12.2228370

  29. A. V. Artemov and E. V. Burnaev, “Ensembles of detectors for online detection of transient changes,” in Proceedings of the 8th International Conference on Machine Vision, Nov. 19–20, 2015, Barcelona, Spain, pp. 98751Z–98751Z. doi 10.1117/12.2228369

  30. E. A. Nadaraya, “On estimating regression,” Theory Probab. Appl. (Engl. Transl.) 9, 141–142 (1964).

    Article  MATH  Google Scholar 

  31. G. S. Watson, “Smooth regression analysis Sankhyā,” Indian J. Stat., Ser. A, 359–372 (1964).

    Google Scholar 

  32. A. N. Kolmogorov, “TheWiener spiral and some other interesting curves inHilbert space,” Dokl.Akad. Nauk SSSR 26, 115–118 (1940).

    Google Scholar 

  33. G. Gripenberg, and I. Norros, “On the prediction of fractional Brownian motion,” J. Appl. Probab., 400–410 (1996).

    Google Scholar 

  34. H. Yaozhong, X. Weilin, and Zh. Weiguo, “Exactmaximum likelihood estimators for drift fractional Brownian motions,” Acta Math. Sci. 31, 1851–1859 (2011).

    Article  MATH  Google Scholar 

  35. B. L. S. Prakasa Rao, “Parametric estimation for linear stochastic differential equations driven by fractional Brownian motion,” Random Operators Stochast. Equat. 11, 229–242 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  36. M. L. Kleptsyna, A. le Breton, and M.-C. Roubaud, “General approach to filtering with fractional brownian noises—application to linear systems,” Int. J. Probab. Stochast. Processes 71, 119–140 (2000).

    MathSciNet  MATH  Google Scholar 

  37. M. L. Kleptsyna and A. le Breton, “Statistical analysis of the fractional Ornstein–Uhlenbeck type process,” Stat. Inference Stochast. Processes 5, 220–248 (2002).

    MathSciNet  MATH  Google Scholar 

  38. M. L. Kleptsyna, P. E. Kloeden, and V. V. Anh, “Nonlinear filtering with fractional Brownian motion,” Probl. Peredachi Inform. 34 (2), 65–76 (1998).

    MathSciNet  MATH  Google Scholar 

  39. M. L. Kleptsyna, P. E. Kloeden, and V. V. Anh, “Linear filtering with fractional Brownian motion,” Stochast. Anal. Appl. 16, 907–914 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  40. R. Sh. Liptser and A. N. Shiryaev, Theory of Martingales (Kluwer, Dordrecht, 1989).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Artemov.

Additional information

(Submitted by E. K. Lipachev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artemov, A.V. Effective Signal Extraction Via Local Polynomial Approximation Under Long-Range Dependency Conditions. Lobachevskii J Math 39, 309–320 (2018). https://doi.org/10.1134/S1995080218030101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080218030101

Keywords

Navigation