Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 2, pp 286–288 | Cite as

Special Metric Invariants

  • E. N. Sosov
Article
  • 20 Downloads

Abstract

In the present paper we obtain new metric invariants of metric spaces. These invariants can be used for classification of the finite metric spaces, their recognition and in the research of Tammes’ problem for sphere.

Keywords and phrases

finite metric space metric invariant main metric invariant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. N. Sosov, “Main metric invariants of finite metric spaces. II,” Russ. Math. 60 (6), 75–78 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. N. Sosov, “Relative N-radius of a bounded subset of a metric space,” Uch. Zap. Kazan. Univ., Ser. Fiz.- Mat. Nauki 153 (4), 28–36 (2011).MathSciNetzbMATHGoogle Scholar
  3. 3.
    D. Yu. Burago, Yu. D. Burago, and S. V. Ivanov, Course of Metric Geometry (Inst. Komp. Issled., Moscow, Izhevsk, 2004) [in Russian].zbMATHGoogle Scholar
  4. 4.
    E. N. Sosov, “Main metric invariants of finite metric spaces,” Russ. Math. 59 (5), 38–40 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A. O. Ivanov, I. M. Nikonov, and A. A. Tuzhilin, “Sets admitting connection by graphs of finite length,” Sb.: Math. 196, 845–884 (2005).MathSciNetzbMATHGoogle Scholar
  6. 6.
    O. R. Musin and A. S. Tarasov, “Extremal problems of circle packings on a sphere and irreducible contact graphs,” Proc. Steklov Inst.Math. 288, 117–131 (2015).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.N. I. Lobachevsky Institute ofMathematics and MechanicsKazan (Volga region) Federal UniversityKazan, TatarstanRussia

Personalised recommendations