Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 2, pp 259–262 | Cite as

Mathematical Model of Qualitative Properties of Exciton Diffusion Generated by Electron Probe in a Homogeneous Semiconductor Material

  • A. N. Polyakov
  • A. N. Smirnova
  • M. A. Stepovich
  • D. V. Turtin
Article
  • 16 Downloads

Abstract

The qualitative properties of the two-dimensional mathematical model of excitons diffusion excited by an electron beamin a semiconductormaterial are investigated. For the studied model proved continuous dependence of the solution from the input data. It is shown that the model can be applied to estimate the diffusion coefficient and the mobility of excitons on the results of experimental measurements. In the simulation are used parameters that are typical for gallium nitride.

Keywords and phrases

Cauchy problem mathematical model diffusion uniqueness continuous dependence on data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Turtin, “Uniqueness theorems for Cauchy problem solutions for evolution equations and systems with growing coefficients,” Cand. Sci. Dissertation (Vladimir, 2012).Google Scholar
  2. 2.
    V. S. Vladimirov and V. V. Zharinov, Equations of Mathematical Physics: Tutorial for Higher Schools, 2nd ed. (Fizmatlit, Moscow, 2004) [in Russian].Google Scholar
  3. 3.
    A. N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, and M. A. Stepovich, “Two-dimensional diffusion and cathodoluminescence of excitons generated by an electron beam in a semiconductor material: results of mathematical modeling,” J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 6, 901–906 (2012).CrossRefGoogle Scholar
  4. 4.
    I. S. Gradshtein and I. M. Ryzhik, Table of Integrals, Series, and Products (Fizmatgiz, Moscow, 1963; Academic, New York, 1980).Google Scholar
  5. 5.
    N. N. Lebedev, Special Functions and Their Decomposition, 2nd ed. (Uchpedgiz, Moscow, 1963) [in Russian].Google Scholar
  6. 6.
    A. N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, and M. A. Stepovich, “Experimental cathodoluminescence studies of exciton transport in gallium nitride,” Bull. Russ. Acad. Sci.: Phys. 76, 970–973 (2012).CrossRefGoogle Scholar
  7. 7.
    A. N. Polyakov, M. Noltemeyer, T. Hempel, J. Christen, and M. A. Stepovich, “About the practical implementation of same time-of-flight measurements scheme in cathodoluminescence microscopy,” Prikl. Fiz., No. 4, 11–15 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. N. Polyakov
    • 1
  • A. N. Smirnova
    • 2
  • M. A. Stepovich
    • 1
  • D. V. Turtin
    • 2
  1. 1.Tsiolkovsky Kaluga State UniversityKalugaRussia
  2. 2.Plekhanov Russian University of Economics, Ivanovo BranchIvanovoRussia

Personalised recommendations