Lobachevskii Journal of Mathematics

, Volume 39, Issue 1, pp 129–137 | Cite as

Factorization of Triangular Matrix-Functions of an Arbitrary Order

  • L. Primachuk
  • S. Rogosin


An efficient method for factorization of square triangular matrix-functions of arbitrary order is proposed. It generalizes the method by G. N. Chebotarev.

Keywords and phrases

factorization partial indices triangular matrix-function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.M. Adukov, “Wiener–Hopf factorization ofmeromorphic matrix-functions,” St. PetersburgMath. J. 4 (1), 51–69 (1993).MathSciNetMATHGoogle Scholar
  2. 2.
    N. P. Vekua, Systems of Singular Integral Equations (P. Noordhoff, Gröningen, 1967; Nauka, Moscow, 1950).MATHGoogle Scholar
  3. 3.
    F. D. Gakhov, “Riemann’s boundary value problem for a system of n pairs of functions,” Usp. Mat. Nauk 7 (4 (50)), 3–54 (1952).MathSciNetMATHGoogle Scholar
  4. 4.
    F. D. Gakhov, Boundary Value Problems, 3rd ed. (Nauka, Moscow, 1977) [in Russian].MATHGoogle Scholar
  5. 5.
    S. N. Kiyasov, “Effective factorization of some classes of third-order matrix-functions,” Uch. Zap. Kazan. Gos. Univ., Ser. Fiz.-Mat. Nauki 150, 65–70 (2008).MATHGoogle Scholar
  6. 6.
    G. S. Litvinchuk and I.M. Spitkovsky, Factorization ofMeasurableMatrix Functions (Birkhäuser, Basel, Boston, 1987).CrossRefGoogle Scholar
  7. 7.
    N. I. Muskhelishvili, Singular Integral Equations, 3rd ed. (Nauka, Moscow, 1968) [in Russian].MATHGoogle Scholar
  8. 8.
    S. Rogosin and S. Mishuris, “Constructive methods for factorization of matrix-functions,” IMA J. Appl. Math. 81, 365–391 (2016).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    I. Feldman, I. Gohberg, and N. Krupnik, “A method of explicit factorization of matrix functions and applications,” Integral Equations Oper. Theory 18, 277–302 (1994).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    G. N. Chebotarev, “Partial indices of the Riemann boundary value problem with a triangular matrix of the second order,” Usp. Mat. Nauk 11, 192–202 (1956).Google Scholar
  11. 11.
    T. Ehrhardt and F.-O. Speck, “Transformation techniques towards the factorization of nonrational 2 × 2 matrix functions,” Linear Algebra Appl. 353, 53–90 (2002).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    T. Ehrhardt and I. M. Spitkovsky, “Factorization of piece-wise constant matrix-functions and systems of differential equations,” St. Petersbg. Math. J. 13, 939–991 (2001).MATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations