Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 1, pp 104–113 | Cite as

Operator Analogy of Quantum Pseudo-Logic

  • M. Matvejchuk
Article

Abstract

In this paper, we study linear operators on real and complex Euclidean spaces which are real-orthogonal projections. It is a generalization of such standard (complex) orthogonal projections for which only the real part of scalar product vanishes. We note the difference between properties of real-orthogonal projections on real and on complex spaces. We can compare some partial order properties of orthogonal and of real-orthogonal projections. We prove that the set of all real-orthogonal projections in a finite-dimensional complex or real space is a quantum pseudo-logic.

Keywords and phrases

Hilbert space R-orthogonality projection partial order logic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Birkhoff and J. von Neumann, “The logic of quantum mechanics,” Ann.Math. 37, 823–843 (1936).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    P. Ptak and S. Pulmannova, Orthomodular Structures as Quantum Logics (Kluwer Academic, Dordrecht, 1991).MATHGoogle Scholar
  3. 3.
    D. Cohen, An Introduction to Hilbert Spaces and Quantum Logic (Springer, Berlin, 1989).CrossRefMATHGoogle Scholar
  4. 4.
    M. Matvejchuk, “Unitary self-adjoint logics of projections,” Int. J. Theor. Phys. 37, 103–107 (1998). doi 10.1023/A:1026617423535MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M. Matvejchuk, “Probability measures on conjugation logics,” Positivity 1, 539–545 (2015). doi 10.1007/s11117-014-0314-4MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M. Matvejchuk, “Gleason’s theorem in W*J-algebras in space with indefinite metric,” Int. J. Theor. Phys. 38, 2065–2093 (1999). doi 10.1023/A:1026661904610MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    M. Matvejchuk and D. Widdows, “Real-orthogonal projections as quantum pseudo-logic,” Lect. Notes Comput. Sci. 9535, 275–283 (2016). doi 10.1007/978-3-319-28675-4__21MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Groß, G. Trenkler, and S. Troschke, “On semi-orthogonality and a special class of matrices,” Linear Algebra Appl. 289, 169–182 (1999).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kazan National Research Technical UniversityKazanRussia

Personalised recommendations