Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 1, pp 89–92 | Cite as

On Mal’cev’s Multiplication of Antivarieties of Algebraic Systems

  • A. V. Kartashova
Article
  • 16 Downloads

Abstract

In this paper it is proved that subantivarieties of an antivariety K form a semigroup with respect to Mal’cev’s multiplication whenever K is an antivariety of algebraic systems whose signature Ω contains only finite number of function symbols.We show that the condition of finiteness of the set of function symbols from Ω is significant. Semigroups of subantivarieties of antivarieties of algebras are characterized.

Keywords and phrases

Antivariety algebraic system Mal’cev’s multiplication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Mal’cev, Algebraic Systems (Nauka, Moscow, 1970) [in Russian].Google Scholar
  2. 2.
    V. A. Gorbunov, Algebraic Theory of Quasivarieties (Consultants Bureau, New York, 1998).MATHGoogle Scholar
  3. 3.
    V. A. Gorbunov and A. V. Kravchenko, “Universal Horn classes and antivarieties of algebraic systems,” Algebra Logic 39, 1–11 (2000).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. I. Mal’cev, “Multiplication of classes of algebraic systems,” Sib. Math. J. 8, 254–267 (1967).MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Neumann, Varieties of Groups (Springer, Berlin, New York, 1967).CrossRefMATHGoogle Scholar
  6. 6.
    A. A. Urman, “Groupoids of varieties of certain algebras,” Algebra Logic 8, 138–144 (1969).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    T. A. Martynova, “The groupoid of 0-reduced varieties of semigroups,” Semigroup Forum 26, 249–274 (1983).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    P. Kohler, “The semigroup of varieties of Brouwerian semilattices,” Trans. Am. Math. Soc. 241, 331–342 (1978).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    V. K. Kartashov, “On groupoids of quasivarieties of unary algebras,” in Universal Algebra and its Applications (Volgograd Gos. Ped. Univ., Volgograd, 1999) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Algebra and GeometryVolgograd Socio Pedagogical UniversityVolgogradRussia

Personalised recommendations