Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 1, pp 84–88 | Cite as

Computable Embeddings of Classes of Structures Under Enumeration and Turing Operators

  • I. Sh. Kalimullin
Article
  • 18 Downloads

Abstract

In the paper we study the differences and partial characterizations of the Turing and enumeration computable embeddings of classes of structures

Keywords and phrases

Erhsov’s hierarchy Turing degrees enumeration degrees elementary theories structural properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Calvert, D. Cummins, S. Miller, and J. F. Knight, “Comparing classes of finite structures,” Algebra Logic 43, 365–373 (2004).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    M. V. Boom, S. Miller, and J. F. Knight, “Turing computable embeddings,” J. Symbolic Logic 72, 901–918 (2007).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    I. Sh. Kalimullin, “Algorithmic reducibilities of algebraic structures,” J. Logic Comput. 22, 831–845 (2012).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.N.I. Lobachevskii Institute of Mathematics and MechanicsKazan (Volga Region) Federal UniversityTatarstanRussia

Personalised recommendations