Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 1, pp 35–45 | Cite as

The Problem of Projecting the Origin of Euclidean Space onto the Convex Polyhedron

Article

Abstract

This paper is aimed at presenting a systematic exposition of the existing now different formulations for the problem of projection of the origin of the Euclidean space onto the convex polyhedron (PPOCP). We have concentrated on the convex polyhedron given as a convex hull of finitely many vectors of the space. We investigated the reduction of the projection program to the problems of quadratic programming, maximin, linear complementarity, and nonnegative least squares. Such reduction justifies the opportunity of utilizing a much more broad spectrum of powerful tools of mathematical programming for solving the PPOCP. The paper’s goal is to draw the attention of a wide range of research at the different formulations of the projection problem.

Keywords and phrases

projection convex polyhedron quadratic programming maximin problem complementarity problem nonnegative least squares problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Wolfe, “Finding the nearest point in a polytope,” Math. Program., No. 11, 128–149 (1976).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    P. I. Stetsyuk and E. A. Nurminski, “Nonsmooth penalty and subgradient algorithms to solve the problem of projection onto a polytope,” Cybern. Syst. Anal. 46, 51–55 (2010).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Z. R. Gabidullina, “A theorem on separability of a convex polyhedron from zero point of the space and its applications in optimization,” Russ. Math. (Izv. VUZ) 50 (12), 18–23 (2006).MathSciNetGoogle Scholar
  4. 4.
    Z. R. Gabidullina, “A linear separability criterion for sets of Euclidean space,” J. Optim. Theory Appl. 158, 145–171 (2013).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Y. Censor and A. Cegielski, “Projection methods: an annotated bibliography of books and reviews, optimization: A,” J. Math. Program. Operat. Res. 64, 2343–2358 (2015).MATHGoogle Scholar
  6. 6.
    H. H. Bauschke and J.M. Borwein, “On projection algorithms for solving convex feasibility problems,” SIAM Rev. 38, 367–426 (1996).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L. M. Bregman, “The relaxation method for finding the common point of convex sets and its applications to the solution of problems in convex programming,” USSR Comput.Math. Math. Phys. 7, 200–217 (1967).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Z. R. Gabidullina, “A theorem on strict separability of convex polyhedra and its applications in optimization,” J. Optim. Theory Appl. 148, 550–570 (2011).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Z. R. Gabidullina, “Necessary and sufficient conditions for emptiness of the cones of generalized support vectors,” Optim. Lett. 9, 693–729 (2015).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    N. Z. Shor, Minimization Methods for Non-differentiable Functions (Springer, Berlin, Heidelber, 1985).CrossRefMATHGoogle Scholar
  11. 11.
    V. F. Dem’yanov and V. N. Malozemov, Introduction to Minimax (Dover, New York, 1990).MATHGoogle Scholar
  12. 12.
    Z. R. Gabidullina and Ya. I. Zabotin, “The relaxation method for pseudoconvex programming problems of a certain type,” Russ. Math. (Izv. VUZ) 37 (12), 44–51 (1993).MathSciNetMATHGoogle Scholar
  13. 13.
    E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for computing the distance between complex objects in three-dimensional space,” IEEE J. Robot. Autom. 4, 193–203 (1988).CrossRefGoogle Scholar
  14. 14.
    Y. Censor, M. Jiang, and A. K. Louis, Mathematical Methods in Biomedical Imaging and Intensitymodulated Radiation Therapy (IMRT) (Birkhauser, Pisa, 2008).MATHGoogle Scholar
  15. 15.
    V. F. Mitchell, V. F. Dem’yanov, and V. N. Malozemov, “Finding the point of polyhedron closest to origin,” SIAM J. Contr. 12, 19–26 (1974).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    F. P. Vasil’ev, Numerical Methods for Solving Extremum Problems (Nauka, Moscow, 1980) [in Russian].Google Scholar
  17. 17.
    E. A. Nurminskii, “Convergence of the suitable affine subspace method for finding the least distance to a simplex,” Comput. Math.Math. Phys. 45, 1915–1922 (2005).MathSciNetGoogle Scholar
  18. 18.
    V. A. Daugavet, Numerical Methods of Quadratic Programming (SPb. Gos. Univ., St. Petersburg, 2004) [in Russian].Google Scholar
  19. 19.
    G.V. Reklaitis, A. Ravindran, and K.M. Ragsdell, Engineering Optimization: Methods and Applications, 2nd ed. (Wiley, New York, 2006).Google Scholar
  20. 20.
    S. Boyd and S. Vandenberghe, Convex Optimization (Cambridge Univ. Press, New York, 2004).CrossRefMATHGoogle Scholar
  21. 21.
    R. S. Sacher, “A decomposition algorithm for quadratic programming,” Math. Program., No. 18, 16–30 (1980).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. Lucia, “Succesive quadratic programming: decompositionmethods,” in Encyclopedia of Optimization, Ed. by C. A. Floudas and P.M. Pardalos (Springer, New York, 2001), pp. 3866–3871.Google Scholar
  23. 23.
    R.K. Brayton, S.W. Director, G. D. Hachtel, and L. Viligal, “A new algorithm for statictical circuit design on quasi-newton methods and function spliting,” IEEE Trans. Circuits Syst. 26, 784–794 (1979).CrossRefGoogle Scholar
  24. 24.
    M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimization calculations,” Lect. Notes Math. 630, 144–157 (1978).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    P. E. Gill, W. Murray, and H. Wright, Practical Optimization (Academic, London, UK, 1981).MATHGoogle Scholar
  26. 26.
    T. F. Coleman and Y. Li, “A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables,” SIAM J. Optim. 6, 1040–1058 (1996).MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    N. Gould and L. Toint, “Preprocessing for quadratic programming,” Math. Program., Ser. B, No. 100, 95–132 (2004).MathSciNetMATHGoogle Scholar
  28. 28.
    V. G. Karmanov, Mathematical Programming (Nauka, Moscow, 1986) [in Russian].MATHGoogle Scholar
  29. 29.
    A. G. Sukharev, A. V. Timokhov, and V. V. Fedorov, A Course in Optimization Methods (Nauka, Moscow, 1986) [in Russian].MATHGoogle Scholar
  30. 30.
    M. K. Gavurin and V. N. Malozemov, Extremum Problems with Linear Constraints (Leningr. Gos. Univ., Leningrad, 1984) [in Russian].MATHGoogle Scholar
  31. 31.
    K. P. Bennett and O. L. Mangasarian, “Robust linear programming discrimination of two linearly inseparable sets,” Optim. Methods Software 1, 23–34 (1992).CrossRefGoogle Scholar
  32. 32.
    K. P. Bennett and E. J. Bredensteiner, “Duality and Geometry in SVM Classifiers,” in Proceedings of the 17th International Conference on Machine Learning, 2000, pp. 57–64.Google Scholar
  33. 33.
    F. R. Gantmacher, The Theory ofMatrices (Nauka, Moscow, 1966) [in Russian].Google Scholar
  34. 34.
    R. W. Cottle and G. B. Dantzig, “Complementarity pivot theory of mathematical programming,” Linear Algebra Appl., No. 1, 103–125 (1968).MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    R. W. Cottle, J.-S. Pang, and V. Venkateswaran, “Sufficient matices and linear complementarity problem,” Linear Algebra Appl. 114–115, 231–249 (1989).CrossRefMATHGoogle Scholar
  36. 36.
    C. E. Lemke, “Bimatrix equilibrium points and mathematical programming,” Manage. Sci. 11, 681–689 (1965).MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    A. Ravindrann and H. Lee, “Computer experiments on quadratic programming algorithms,” Eur. J. Oper. Res. 8, 166–174 (1981).MathSciNetCrossRefGoogle Scholar
  38. 38.
    C. L. Lowson and R. J. Hanson, Solving Least Squares Problems (Prentice-Hall, NJ, 1974).Google Scholar
  39. 39.
    R. Bro and S. de Jong, “A fast non-negativity-constrained least squares algorithm,” J. Chemometr. 11, 393–401 (1997).CrossRefGoogle Scholar
  40. 40.
    D. Chen and R. Plemmons, “Nonnegativity constraints in numerical analysis,” in Proceedings of the Symposium on Birth of Numerical Analysis (Leuven, Belgium, 2007).Google Scholar
  41. 41.
    Yuancheg Luo and R. Duraiswami, “Efficient parallel non-negative least squares onmulticore architectures,” SIAM J. Sci. Comput. 33, 2848–2863 (2011).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations