Advertisement

Lobachevskii Journal of Mathematics

, Volume 39, Issue 1, pp 46–50 | Cite as

About Existence of Almost Kähler Structures on Six-Dimensional G1-Manifolds

Article
  • 13 Downloads

Abstract

The question about compatibility between different classes of almost Hermitian 6-manifolds (M, g, J) with the same almost complex structure J is researched. The list of incompatible almost Hermitian structures in the case is found.

Keywords and phrases

almost Kähler structures sixteen classes of almost Hermitian manifolds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. K. Smolentsev, “On the space of Riemannian metrics on symplectic and contact manifolds,” Sib. Math. J. 42, 1165–1169 (2001).MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Armsrong, “Almost–Kähler geometry,” PhD Thesis (Univ. Oxford, 1998).Google Scholar
  3. 3.
    M. Lejmi, “Strictly nearly Kähler 6-manifolds are not compatible with symmetric forms,” C.R. Math. Acad. Sci. Paris, Ser. 1 343, 759–762 (2006).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    A. Gray and L. M. Hervella, “The sixteen classes of almost Hermitian manifolds and their linear invariants,” Ann.Mat. Pure Appl. 123, 35–58 (1980).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry (Interscience, New York, London, Sydney, 1969).MATHGoogle Scholar
  6. 6.
    R. L. Bryant, “On the geometry of almost complex 6-manifolds,” Asian J.Math. 10, 561–605 (2006).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    J.-B. Butruille, “Classification des variétés approximativement kähleriennes homogénes,” Ann. Global Anal. Geom. 27, 201–225 (2005).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Kemerovo State UniversityKemerovoRussia

Personalised recommendations