Simulation of virtual time profile in conservative parallel discrete event simulation algorithm for small-world network

Abstract

We simulate model for evolution of local virtual time profile in conservative parallel discrete event the simulation (PDES) algorithm with long-range communication links. The main findings of simulation are that i) growth exponent depends logarithmically on the concentration p of long-range links; ii) utilisation of processing elements time decreases slowly with p. Thismeans that the conservative PDES with long-range communication links is fully scalable.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. R. Joubert, H. Leather, M. Parsons, F. Peters, and M. Sawyer, Parallel Computing: On the Road to Exascale (IOS Press BV, Amsterdam, 2016).

    Google Scholar 

  2. 2.

    D. H. Bailey, H. David, J. Dongarra, G. Gao, A. Hoisie, J. Hollingsworth, D. Jefferson, C. Kamath, A. Malony, and D. Quinian, “Performance technologies for peta-scale systems: a white paper prepared by the performance evaluation research center and collaborators,” White Paper (Lawrence Berkeley Natl. Laboratories, 2003).

    Google Scholar 

  3. 3.

    R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM 33 (10), 30–53 (1990).

    Article  Google Scholar 

  4. 4.

    L. N. Shchur and M. A. Novotny, “Evolution of time horizons in parallel and grid simulations,” Phys. Rev. E 70, 026703 (2004).

    Article  Google Scholar 

  5. 5.

    D. R. Jefferson, “Virtual time,” ACMTrans. Program. Languages Syst. 7, 404–425 (1985).

    Article  Google Scholar 

  6. 6.

    G. Korniss, Z. Toroczkai, M. A. Novotny, and P. A. Rikvold, “From massively parallel algorithms and fluctuating time horizons to nonequilibrium surface growth,” Phys. Rev. Lett. 84, 1351 (2000).

    Article  Google Scholar 

  7. 7.

    L. F. Ziganurova, M. A. Novotny, and L. N. Shchur, “Model for the evolution of the time profile in optimistic parallel discrete event simulations,” J. Phys.: Conf. Ser. 681, 012047 (2016).

    Google Scholar 

  8. 8.

    H. Guclu, G. Korniss, M. A. Novotny, Z. Toroczkai, and Z. Racz, “Synchronization landscapes in smallworld-connected computer networks,” Phys. Rev. E 73, 066115 (2006).

    Article  Google Scholar 

  9. 9.

    D. J. Watts, and S. H. Strogatz, “Collective dynamics of’ small-world’ networks,” Nature 393 (6684), 440–442 (1998).

    Article  MATH  Google Scholar 

  10. 10.

    G. Korniss, M. A. Novotny, Z. Toroczkai, and P. A. Rikvold, “Suppressing roughness of virtual times in parallel discrete-event simulations,” Science 299 (5607), 677–679 (2003).

    Article  Google Scholar 

  11. 11.

    M. S. Guskova, L. Yu. Barash, and L. N. Shchur, “RNGAVXLIB: program library for random number generation, AVX realization,” Comput. Phys. Commun. 200, 402–405 (2016).

    Article  MATH  Google Scholar 

  12. 12.

    M. Kardar, G. Parisi, and Y. C. Zhang “Dynamic scaling of growing interfaces,” Phys. Rev. Lett. 56, 889 (1986).

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Shchur.

Additional information

Submitted by A. M. Elizarov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shchur, L., Ziganurova, L. Simulation of virtual time profile in conservative parallel discrete event simulation algorithm for small-world network. Lobachevskii J Math 38, 967–970 (2017). https://doi.org/10.1134/S1995080217050316

Download citation

Keywords and phrases

  • Parallel discrete event simulation
  • conservative algorithm
  • local virtual time
  • scalability
  • synchronisation
  • processing elements
  • small-world networks
  • long-range interactions
  • critical exponents