Skip to main content
Log in

Strict superharmonicity of Mityuk’s function for countably connected domains of simple structure

Lobachevskii Journal of Mathematics Aims and scope

Cite this article

Abstract

Strict superharmonicity of generalized reduced module as a function of a point (we call it Mityuk’s function) is established for the subclass of countably connected domains with unique limit point boundary component. The function just mentioned was first studied in detail by I.P. Mityuk and plays now an important role in the research of the exterior inverse boundary value problems of the theory of analytic functions in the multiply connected domains. At the heart of such a research one can see the fact that the critical points of Mityuk’s function are only maxima, saddles or semisaddles of corresponding surface. This fact is followed from the above strict superharmonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. T. Nuzhin, “On some inverse boundary value problems and their applications to the definition of sectional shape of twisted rods,” Uch. Zap. Kazan. Univ. 109 (1), 97–120 (1949).

    Google Scholar 

  2. F. D. Gakhov, “On the inverse boundary problems,” Dokl. Akad. Nauk SSSR 86 (4), 649–652 (1952).

    MathSciNet  MATH  Google Scholar 

  3. L. A. Aksent’ev, M. I. Kinder, and S. B. Sagitova, “Solvability of the exterior inverse boundary value problem in the case of multiply connected domain,” Tr. Semin. Kraev. Zadacham 20, 22–34 (1983).

    MathSciNet  MATH  Google Scholar 

  4. M. I. Kinder, “The number of solutions of F. D. Gakhov’s equation in the case of a multiply connected domain,” Izv. Vyssh. Uchebn. Zaved., Mat. 28 (8), 69–72 (1984).

    MathSciNet  MATH  Google Scholar 

  5. M. I. Kinder, “Investigation of F. D.Gakhov’s equation in the case of multiply connected domains,” Tr. Semin. Kraev. Zadacham 22, 104–116 (1985).

    MathSciNet  MATH  Google Scholar 

  6. L. A. Aksent’ev, A. M. Elizarov, and M. I. Kinder, “Inverse boundary value problems for multiply connected domains on Riemann surfaces of genus zero,” Tr. Semin. Kraev. Zadacham 21, 19–32 (1984); Tr. Semin. Kraev. Zadacham 22, 16–29 (1985); Tr. Semin. Kraev. Zadacham 23, 25–36 (1987).

    MathSciNet  MATH  Google Scholar 

  7. L. A. Aksent’ev, A. M. Elizarov, and M. I. Kinder, “Continuation of F. D. Gakhov’s work in inverse boundary value problems,” in Proceedings of the Commemorative Seminar on Boundary Value Problems Dedicated to the 75th Birthday of Acad. F. D. Gakhov (Minsk, 1981), pp. 139–142.

    Google Scholar 

  8. M. I. Kinder, “Exterior inverse boundary value problem in multiply connected regions and on Riemann surfaces,” Cand. Sci. (Math.) Dissertation (Kazan State Univ., Kazan, 1984).

    Google Scholar 

  9. A. V. Kazantsev, “Extremal properties of the inner radius and their applications,” Cand. Sci. (Math.) Dissertation (Kazan State Univ., Kazan, 1990).

    Google Scholar 

  10. L. A. Aksent’ev, A. V. Kazantsev, M. I. Kinder, and A. V. Kiselev, “Classes of uniqueness of an exterior inverse boundary value problem,” Tr. Semin. Kraev. Zadacham 24, 39–62 (1990).

    MathSciNet  Google Scholar 

  11. L. A. Aksent’ev, A. V. Kazantsev, and M. I. Kinder, “On classes of uniqueness of an exterior inverse boundary value problem,” in Proceedings of the 2nd Mathematical Readings in Memory of M. Ya. Suslin, Sept. 23–28, Saratov, 1991, p. 61.

    Google Scholar 

  12. A. V. Kiselev, “Geometric properties of solutions of the exterior inverse boundary value problem,” Izv. Vyssh. Uchebn. Zaved., Mat. 36 (7), 20–25 (1992).

    MathSciNet  MATH  Google Scholar 

  13. A. V. Kazantsev and M. I. Kinder, “Solvability of the exterior inverse boundary value problem in the case of multiply connected domains,” in Proceedings of the 11th International Conference on Algebra and Analysis, Dedicated to the 100th Anniversary of the Birth of N. G. Chebotarev, Kazan, June 5–11, 1994, Vol. 2, pp. 65–66.

    Google Scholar 

  14. I. P. Mityuk, “A generalized reduced module and some of its applications,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 2, 110–119 (1964).

    MathSciNet  Google Scholar 

  15. A. V. Kazantsev, “Gakhov set in the Hornich space under the Bloch restriction on pre-Schwarzians,” Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 155 (2), 65–82 (2013).

    MathSciNet  MATH  Google Scholar 

  16. A. V. Kazantsev, “Zmorovich’s method in the problem of investigation of Mityuk’s functional,” in Proceedings of the 7th International Symposium on Fourier Series and Their Applications, Rostov, 2014, pp. 79–80.

    Google Scholar 

  17. H. Grötzsch, “Über konforme Abbildung unendlich vielfach zusammenhängender schlichter Bereiche mit endlich vielen Häufungsrandkomponenten,” Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 81, 51–86 (1929).

    MATH  Google Scholar 

  18. H. Grötzsch, “Das Kreisbogenschlitztheorem der konformen Abbildung schlichter Bereiche,” Ber. Sächs. Akad.Wiss. Leipzig, Math.-Phys. Kl. 83, 238–253 (1931).

    MATH  Google Scholar 

  19. E. Reich and S. E. Warschawski, “On canonical conformal maps of regions of arbitrary connectivity,” Pacif. J. Math. 10 (3), 965–989 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Bergman and M. Schiffer, “Kernel functions and conformalmapping,” Compos. Math. 8, 205–249 (1951).

    MATH  Google Scholar 

  21. G. M. Golusin, Geometric Theory of Functions of a Complex Variable, Vol. 26 of Transl. Math. Monographs (Am.Math. Soc., Providence, 1969).

    Google Scholar 

  22. M. Schiffer, “Hadamard’s formula and variation of domain-functions,” Am. J. Math. 68 (4), 417–448 (1946).

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Hayman and P. Kennedy, Subharmonic Functions, (Academic, London, 1976), Vol.1.

  24. S. Stoilov, The Theory of Functions of a Complex Variable (Fizmatgiz, Moscow, 1962), Vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Elizarov.

Additional information

Submitted by F. G. Avkhadiev

To 85th anniversary of our teacher, Professor L.A. Aksent’ev

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elizarov, A.M., Kazantsev, A.V. & Kinder, M.I. Strict superharmonicity of Mityuk’s function for countably connected domains of simple structure. Lobachevskii J Math 38, 408–413 (2017). https://doi.org/10.1134/S1995080217030088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080217030088

Keywords and phrases

Navigation