Skip to main content
Log in

On quasinearly subharmonic functions

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We recall the definition of quasinearly subharmonic functions, point out that this function class includes, among others, subharmonic functions, quasisubharmonic functions, nearly subharmonic functions and essentially almost subharmonic functions. It is shown that the sum of two quasinearly subharmonic functions may not be quasinearly subharmonic. Moreover, we characterize the harmonicity via quasinearly subharmonicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ahern and J. Bruna, “Maximal and area integral characterizations of Hardy–Sobolev spaces in the unit ball of Cn,” Rev. Mat. Iberoam. 4, 123–153 (1988).

    Article  MATH  Google Scholar 

  2. P. Ahern and W. Rudin, “Zero sets of functions in harmonicHardy space,” Math. Scand. 73, 209–214 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  3. B. J. Cole and T. J. Ransford, “Subharmonicity without upper semicontinuity,” J. Funct. Anal. 147, 420–442 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  4. E. di Benedetto and N. S. Trudinger, “Harnack inequalities for quasi-minima of variational integrals,” Ann. Inst. H. Poincare, Anal. Nonlin. 1, 295–308 (1984).

    Article  MATH  Google Scholar 

  5. O. Djordjevićand M. Pavlović, “Equivalent norms on Dirichlet spaces of polyharmonic functions on the ball in RN,” Bol. Soc. Mat. Mex. 13, 307–319 (2007).

    Google Scholar 

  6. O. Djordjevićand M. Pavlović, “Lp-integrability of the maximal function of a polyharmonic functions,” J. Math. Anal. Appl. 336, 411–417 (2007).

    Article  MathSciNet  Google Scholar 

  7. Y. Domar, “On the existence of a largest subharmonic minorant of a given functions,” Ark. Mat. 3 (39), 429–440 (1957).

    MathSciNet  MATH  Google Scholar 

  8. Y. Domar, “Uniform boundedness in families related to subharmonic functions,” J. London Math. Soc. 38, 485–491 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  9. O. Dovgoshey and J. Riihentaus, “Bi-Lipschitz mappings and quasinearly subharmonic functions,” Int. J. Math. Math. Sci., 1–8 (2010).

    Google Scholar 

  10. O. Dovgoshey and J. Riihentaus, “A remark concerning generalized mean value inequalities for subharmonic functions,” in Proceedings of the International Conference Analytic Methods of Mechanics and Complex Analysis, Dedicated to N. A. Kilchevskii and V. A. Zmorovich on the Occasion of their Birthday Centenary, Kiev, Ukraine, June 29–July 5, 2009, Tr. Inst. Mat. Akad. Nauk Ukr. 7 (2), 26–33 (2010).

    Google Scholar 

  11. O. Dovgoshey and J. Riihentaus, “Mean type inequalities for quasinearly subharmonic functions,” Glasgow Math. J. 55, 349–368 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Fefferman and E. M. Stein, “Hp spaces of several variables,” Acta Math. 129, 137–192 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  13. J. B. Garnett, Bounded Analytic Functions (Springer, New York, 2007).

    MATH  Google Scholar 

  14. W. K. Hayman and P. B. Kennedy, Subharmonic Functions (Academic, London, 1976), Vol. 1.

    MATH  Google Scholar 

  15. D. J. Hallenbeck, “Radial growth of subharmonic functions,” Pitman Res. Notes 262, 113–121 (1992).

    MathSciNet  MATH  Google Scholar 

  16. M. Herve, “Analytic and plurisubharmonic functions in finite and infinite dimensional spaces,” Lect. Notes Math. 198, 1–90 (1971).

    Article  MathSciNet  Google Scholar 

  17. V. Kojić, “Quasi-nearly subharmonic functions and conformal mapping,” Filomat. 21, 243–249 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Koskela and V. Manojlović, “Quasi-nearly subharmonic functions and quasiconformalmapping,” Potential Anal. 37, 187–196 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. U. Kuran, “Subharmonic behavior of |h|p, (p > 0, h harmonic),” J. London Math. Soc. 8, 529–538 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  20. E. H. Lieb and M. Loss, Analysis, Vol. 14 of Graduate Studies in Mathematics (Amer. Math. Soc., Providence, Rhode Island, 2001).

  21. O. R. Mihić, “Some properties of quasinearly subharmonic functions and maximal theorem for Bergman type spaces,” ISRN Math. Anal. 2013, 515398 (2013).

    MathSciNet  MATH  Google Scholar 

  22. Y. Mizuta, Potential Theory in Euclidean Spaces, Vol. 6 of Gaguto International Series, Mathematical Sciences and Applications (Gakkotosho, Tokyo, 1996).

    MATH  Google Scholar 

  23. M. Pavlović, “On subharmonic behavior and oscillation of functions on balls in Rn,” Publ. Inst. Math. (Beograd) 55 (69), 18–22 (1994).

    MathSciNet  MATH  Google Scholar 

  24. M. Pavlović, “Subharmonic behavior of smooth functions,” Mat. Vesn. 48, 15–21 (1996).

    MATH  Google Scholar 

  25. M. Pavlovićand J. Riihentaus, “Classes of quasi-nearly subharmonic functions,” Potential Anal. 29, 89–104 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Rado, Subharmonic Functions (Springer, Berlin, 1937).

    Book  MATH  Google Scholar 

  27. J. Riihentaus, “On a theorem of Avanissian–Arsov,” Expo. Math. 7, 69–72 (1989).

    MathSciNet  MATH  Google Scholar 

  28. J. Riihentaus, “Subharmonic functions: non-tangential and tangential boundary behavior,” in Function Spaces, Differential Operators and Nonlinear Analysis (FSDONA’99), Proceedings of the Syöte Conference 1999, Ed. by V. Mustonen and J. Rakosnik (Math. Inst., Czech Acad. Science, Praha, 2000), p. 229–238.

    Google Scholar 

  29. J. Riihentaus, “A generalized mean value inequality for subharmonic functions,” Expo. Math. 19, 187–190 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Riihentaus, “Subharmonic functions, mean value inequality, boundary behavior, nonintegrability and exceptional sets,” in Proceedings of the InternationalWorkshop on Potential Theory and Free Boundary Flows, Kiev, Ukraine, August 19–27, 2003, Tr. Inst. Mat. NANU 1, 169–191 (2004).

    Google Scholar 

  31. J. Riihentaus, “Weighted boundary behavior and nonintegrability of subharmonic functions,” in Proceedings of the International Conference on Education and Information Systems: Technologies and Applications, EISTA’04, Orlando, Florida, USA, July 21–25, 2004, Ed. by M. Chang, Y-T. Hsia, F. Malpica, M. Suarez, A. Tremante, and F. Welsch (2004), Vol. 2, pp. 196–202.

    Google Scholar 

  32. J. Riihentaus, “An integrability condition and weighted boundary behavior of subharmonic and Msubharmonic functions: a survey,” Int. J. Diff. Equations Appl. 10, 1–14 (2005).

    MATH  Google Scholar 

  33. J. Riihentaus, “A weighted boundary limit result for subharmonic functions,” Adv. Algebra Anal. 1, 27–38 (2006).

    MathSciNet  MATH  Google Scholar 

  34. J. Riihentaus, “Separately quasi-nearly subharmonic functions,” in Complex Analysis and Potential Theory, Proceedings of the Conference Satellite to ICM 2006, Gebze, Turkey, September 8–14, 2006, Ed. by T. Aliyev Azerog? lu and P. M. Tamrazov (World Scientific, Singapore, 2007), pp. 156–165.

    Google Scholar 

  35. J. Riihentaus, “On the subharmonicity of separately subharmonic functions,” in Proceedings of the 11th WSEAS International Conference on Applied Mathematics MATH’07, Dallas, Texas, USA, March 22–24, 2007, Ed. by K. Psarris and A. D. Jones (World Sci. Eng. Acad. Soc., 2007), pp. 230–236.

    Google Scholar 

  36. J. Riihentaus, “Subharmonic functions, generalizations and separately subharmonic functions,” in Proceedings of the 14th Conference on Analytic Functions, July 22–28, 2007, Chelm, Poland, Sci. Bull. Chelm, Sect. Math. Comput. Sci. 2, 49–76 (2007).

    Google Scholar 

  37. J. Riihentaus, “Separately subharmonic functions and quasi-nearly subharmonic functions,” in Proceedings of the 12th Worlds Multi-Conference on Systemics, Cybernetics and Informatics WMSCI 2008, Orlando, Florida, USA, June 29–July 2, 2008, Ed. by N. Callaos, W. Lesso, C. D. Zinn, J. Baralt, J. Boukachour, C. White, T. Marwala, and F. Nelwamondo (2008), Vol. 5, pp. 53–56.

    Google Scholar 

  38. J. Riihentaus, “On an inequality related to the radial growth of subharmonic functions,” CUBO,Math. J. 11 (4), 127–136 (2009).

    MathSciNet  MATH  Google Scholar 

  39. J. Riihentaus, “Subharmonic functions, generalizations, weighted boundary behavior, and separately subharmonic functions: a survey,” in Proceedings of the 5th World Congress of Nonlinear Analysts (WCNA 2008), Orlando, Florida, USA, July 2–9, 2008, Nonlin. Anal., Ser. A: Theory, Methods Appl. 71, e2613–e26267 (2009).

    Google Scholar 

  40. M. Stoll, “Weighted tangential boundary limits of subharmonic functions on domains in Rn (n = 2),” Math. Scand. 83, 300–308 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Stoll, “Harmonic majorants for eigenfunctions of the Laplacian with finite Dirichlet integrals,” J. Math. Anal. Appl. 274, 788–811 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  42. M. Stoll, “On generalizations of the Littlewood-Paley inequalities to domains in Rn, (n = 2),” in Proceedings of the International Workshop on Potential Theory in Matsue, Shimane University, Matsue, Japan, August 23–28, 2004; “The Littlewood-Paley inequalities for Hardy-Orlicz spaces of harmonic functions on domains in Rn,” Adv. Studies PureMath. 4, 363–376 (2006).

    Google Scholar 

  43. M. Stoll, “On the Littlewood–Paley inequalities for subharmonic functions on domains in Rn,” in Recent Advances in Harmonic Analysis and Applications, Ed. by D. Bilyk et al., Springer Proc. Math. Stat. 25 (2), 357–383 (2013).

    Google Scholar 

  44. M. Stoll, “Littlewood-Paley theory for subharmonic functions on the unit ball in RN,” J. Math. Anal. Appl. 420, 483–514 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  45. N. Suzuki, “Nonintegrability of harmonic functions in a domain,” Jpn. J. Math. 16, 269–278 (1990).

    MathSciNet  MATH  Google Scholar 

  46. N. Suzuki, “Nonintegrability of superharmonic functions,” Proc. Am. Math. Soc. 113, 113–115 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  47. E. Szpilrajn, “Remarques sur les fonctions sousharmoniques,” Ann. Math. 34, 588–594 (1933).

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Torchinsky, Real-Variable Methods in Harmonic Analysis (Academic, London, 1986).

    MATH  Google Scholar 

  49. M. Vuorinen, “On the Harnack constant and the boundary behavior of Harnack functions,” Ann. Acad. Sci. Fenn., Ser. AI:Math. 7, 259–277 (1982).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Dovgoshey.

Additional information

This paper is dedicated to Professor Vladimir Gutlyanskii on the occasion of his 75th anniversary

Submitted by A. I. Aptekarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovgoshey, O., Riihentaus, J. On quasinearly subharmonic functions. Lobachevskii J Math 38, 245–254 (2017). https://doi.org/10.1134/S1995080217020068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080217020068

Keywords and phrases

Navigation