Lobachevskii Journal of Mathematics

, Volume 37, Issue 3, pp 244–254 | Cite as

Efficiency of genetic algorithm for subject search queries

  • V. K. IvanovEmail author
  • B. V. PalyukhEmail author
  • A. N. SotnikovEmail author


The article presents and generalizes the results on some performance indicators of genetic algorithm developed by authors and applied to effective search queries and selection of relevant results after document subject search. It is shown that the developed technology expands opportunities of semantic search and increases the number of the found relevant results. In particular, we made an effort to show the ability of the developed algorithm to achieve the neighborhood of the fitness function in a finite number of steps, to provide higher precision of search in comparison with the well-known search engines of the Internet as well as to provide the acceptable semantic relevance of the found documents.

Keywords and phrases

Convergence genetic algorithm fitness function population ranking relevance search precision search query 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Chu, Information representation and retrieval in the digital age (American Society for Information Science and Technology by Information Today Inc.,Medford, NJ, 2010).Google Scholar
  2. 2.
    C. D. Manning, P. Raghavan, and H. Schutze, Introduction to information retrieval (Cambridge University Press, Cambridge, England, 2009).zbMATHGoogle Scholar
  3. 3.
    A. Broder, ACM SIGIR Forum. 36 (2), 3–10 (2002).CrossRefGoogle Scholar
  4. 4.
    ?. Agbele, A. Adesina, D. Kong, and O. Ayangbekun, Applied Computational Intelligence and Soft Computing. 2012, 7 (2012).CrossRefGoogle Scholar
  5. 5.
    S. S. Sathya and Ph. Simon, International Journal of Computer Theory and Engineering. 1 (4), 450–455 (2009).CrossRefGoogle Scholar
  6. 6.
    L. C. Chen, C. J. Luh, and C. Jou, Information Systems. 30 (4), 299–316 (2005).CrossRefGoogle Scholar
  7. 7.
    T. P. C. Silva et al., Information Systems. 34 (2), 276–289 (2009).CrossRefGoogle Scholar
  8. 8.
    F. Johnson and S. Kumar, Advances in Computing, Communication, and Control Communications in Computer and Information Science. 361, 82–93 (2013).CrossRefGoogle Scholar
  9. 9.
    M. H. Marghny and A. F. Ali, AIML’05 Conference, CICC, Cairo, Egypt, 82–87 (2005).Google Scholar
  10. 10.
    L. Tamine, C. Chrisment, and M. Boughanem, Information Processing and Management. 39, 215–231 (2003).CrossRefGoogle Scholar
  11. 11.
    R. L. Cecchini et al., Information Processing and Management. 44, 863–878 (2008).CrossRefGoogle Scholar
  12. 12.
    R. L. Cecchini et al., Journal of the American Society for Information Science and Technology. 61 (6), 1258–1274 (2010).Google Scholar
  13. 13.
    R. Varadarajan and V. Hristidis, IEEE Transactions on Knowledge and Data Engineering. 20 (3), 411–424 (2008).CrossRefGoogle Scholar
  14. 14.
    M. Sinha and S. Chande, Research Journal of Information Technology. 2 (3), 139–144 (2010).CrossRefGoogle Scholar
  15. 15.
    V. K. Ivanov, B. V. Palyukh, and A. N. Sotnikov, Programmnyye produkty i sistemy. 4, 197–202 (2013).Google Scholar
  16. 16.
    V. K. Ivanov, B. V. Palyukh, and A. N. Sotnikov, Fed CSIS’2014 Annals of Computer Science and Information Systems. 3, 13–20 (2014).CrossRefGoogle Scholar
  17. 17.
    V. K. Ivanov, Innovatsii v nauke. (25), 8–15 (2013).Google Scholar
  18. 18.
    G. Salton, A. Wong, and C. S. Yang, Communications of the ACM. 18 (11), 613–620 (1975).CrossRefGoogle Scholar
  19. 19.
    V. K. Ivanov and P. I. Meskin, Programmnye produkty i sistemy. 4, 118–126 (2014).Google Scholar
  20. 20.
    J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (The MIT Press, 1992).Google Scholar
  21. 21.
    V. K. Ivanov and B. V. Palyukh, OSTIS-2015 Materialy konferencii, 471–476 (2015).Google Scholar
  22. 22.
    M. Sanderson, Foundations and Trends in Information Retrieval. 4 (4), 247–375 (2010).CrossRefGoogle Scholar
  23. 23.
    K. Collins-Thompson et al., The Twenty-Second Text REtrieval Conference (TREC 2013) Proceedings, SP 500–302 (2014).Google Scholar
  24. 24.
    J. R. Frank et al., The Twenty-Second Text Retrieval Conference (TREC 2013) Proceedings, SP 500–302 (2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Tver State Technical University Joint Supercomputer Centre of the Russian Academy of SciencesTverRussia

Personalised recommendations