Skip to main content
Log in

Design of optimal control for motions of elastic bodies: Variational approaches

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

For the forced motion of elastic bodies, we provide the variational and projection statements of initial-boundary problems. In the framework of the spatial linearmodel, we investigate the optimal control problem for an elastic rectilinear beam with a rectangular cross-section. Using the proposed generalized formulations, we develop a design algorithm for optimal displacements of elastic beams. Results of the numerical simulation and the analysis of the dynamics are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Kostin and V. V. Saurin, Integrodifferential Relations in Linear Elasticity (De Gruyter, Berlin, 2012).

    Book  MATH  Google Scholar 

  2. G. V. Kostin and V. V. Saurin, Prikl. Mat. Mekh. 75 (6), 995–1010 (2011).

    MathSciNet  Google Scholar 

  3. G. V. Kostin, Izv. Ross. Akad. Nauk, Theor. Sist. Upr. (4), 21–31 (2007).

    Google Scholar 

  4. V. V. Saurin, G. V. Kostin, A. Rauh, and H. Aschemann, Int. Rev.Mech. Eng. 5 (2), 244–256 (2011).

    Google Scholar 

  5. G. V. Kostin, V. V. Saurin, H. Aschemann, and A. Rauh, Math. Comput.Model. Dyn. Syst. 20 (5), 504–527 (2014).

    Article  MathSciNet  Google Scholar 

  6. S. P. Timoshenko and J. Goodier, Theory of Elasticity (Nauka, Moscow, 1979) [in Russian].

    MATH  Google Scholar 

  7. A. N. Tychonoff and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  8. J.-L. Lions, Optimal Control of Systems Described by Partial Differential Equations (Mir, Moscow, 1972) [in Russian].

    Google Scholar 

  9. S. P. Timoshenko, Oscillations in Engineering (Nauka, Moscow, 1967) [in Russian].

    MATH  Google Scholar 

  10. N. Dunford and J. Schwartz, Linear Operators. Part II: Spectral Theory. Self-Adjoint Operators in Hilbert Space (Mir, Moscow, 1966) [in Russian].

    MATH  Google Scholar 

  11. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko, Mathematical Theory of Optimal Processes (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Saurin or G. V. Kostin.

Additional information

Original Russian Text © V.V. Saurin, G.V. Kostin, 2015, published in Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2015, Vol. 157, No. 3, pp. 122–136.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saurin, V.V., Kostin, G.V. Design of optimal control for motions of elastic bodies: Variational approaches. Lobachevskii J Math 37, 368–380 (2016). https://doi.org/10.1134/S1995080216030057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080216030057

Keywords and phrases

Navigation