Abstract
In this paper we consider a generalization of quantum hash functions for arbitrary groups. We show that quantum hash function exists for arbitrary abelian group. We construct a set of “good” automorphisms—a key component of quantum hash funciton. We prove some restrictions on Hilbert space dimension and group used in quantum hash function.
This is a preview of subscription content, access via your institution.
References
- 1.
H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Phys. Rev. Lett. 87 (16), 167902 (2001).
- 2.
F. Ablayev and A. Vasiliev, Electronic Proceedings in Theoretical Computer Science 9, 1–11 (2009).
- 3.
F. Ablayev and A. Vasiliev, Laser Physics Letters 11 (2), 5202 (2014).
- 4.
C. McDiarmid, Surveys in Combinatorics 141 (1), 148–188 (1989).
- 5.
G. C. Shephard, Canadian J. Math. 5 (3), 363–383 (1953).
- 6.
G. C. Shephard and J. A. Todd, Canadian J. Math. 6 (2), 274–304 (1954).
Author information
Affiliations
Corresponding author
Additional information
Submitted by F. M. Ablayev
Rights and permissions
About this article
Cite this article
Ziiatdinov, M. Quantum Hashing. Group approach. Lobachevskii J Math 37, 222–226 (2016). https://doi.org/10.1134/S1995080216020165
Received:
Published:
Issue Date:
Keywords and phrases
- Quantum hash function
- quantum fingerprinting