Lobachevskii Journal of Mathematics

, Volume 37, Issue 2, pp 214–221 | Cite as

Lutz filtration as a Galois module

Article

Abstract

In the paper, we consider a formal module F(ML) and its Lutz filtration MLML2ML3 ⊃..., where K is a finite extension of the field of p-adic numbers Qp, L/K is a normal extension without higher ramification with Galois group G = Gal(L/K), F(X, Y) is a formal group over a ring of integers OK with finite height. We study its structure as Z[G]-modules. The main result is contained in Theorem 4.

Keywords and phrases

Lutz filtration formal group law 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Vostokov, Zap. Nauchn. Sem. LOMI 160 (8), 182–192 (1987).Google Scholar
  2. 2.
    S. V. Vostokov and A. N. Zinoviev, J. Math. Sci. (N.Y.) 145 (1), 4765–4772 (2007).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. V. Bondarko and S. V. Vostokov, Proc. Steklov Inst. Math. 241, 35–37 (2003).MathSciNetGoogle Scholar
  4. 4.
    M. I. Bashmakov and A. N. Kirillov, Mathematics of the USSR-Izvestiya 9 (6), 1155–1167 (1975).CrossRefGoogle Scholar
  5. 5.
    S. V. Vostokov, Mathematics of the USSR-Izvestiya 13 (3), 557–588 (1979).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.St. PetersburgRussia

Personalised recommendations