Skip to main content
Log in

Quantum computer with atomic logical qubits encoded on macroscopic three-level systems in common quantum electrodynamic cavity

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We propose an effective realization of the universal set of elementary quantum gates in solid state quantum computer based on macroscopic (or mesoscopic) resonance systems — multiatomic coherent ensembles, squids or quantum dots in quantum electrodynamic cavity. We exploit an encoding of logical qubits by the pairs of the macroscopic two- or three-level atoms that is working in a Hilbert subspace of all states inherent to these atomic systems. In this subspace, logical single qubit gates are realized by the controlled reversible transfer of single atomic excitation in the pair via the exchange of virtual photons and by the frequency shift of one of the atomic ensembles in a pair. In the case of two-level systems, the logical two-qubit gates are performed by the controlling of Lamb shift magnitude in one atomic ensemble, allowing/blocking the excitation transfer in a pair, respectively, that is controlled by the third atomic system of another pair. When using three-level systems, we describe the NOT-gate in the atomic pair controlled by the transfer of working atomic excitation to the additional third level caused by direct impact of the control pair excitation. Finally, we discuss advantages of the proposed physical system for accelerated computation of some useful quantum gates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 1 edition, October 2000).

    MATH  Google Scholar 

  2. Mikio Nakahara and Tetsuo Ohmi, Quantum Computing: FromLinear Algebra to Physical Realizations (CRC Press, Taylor & Francis, 2008).

    Book  Google Scholar 

  3. Pieter Kok,W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn, Rev. Mod. Phys. 79(1), 135 (2007).

    Article  Google Scholar 

  4. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464(7285), 45 (2010).

    Article  Google Scholar 

  5. E. Brion, K. Mølmer, and M. Saffman, Phys. Rev. Lett. 99(26), 260501 (2007).

    Article  Google Scholar 

  6. M. Saffman and K. Mølmer, Phys. Rev. A 78(1), 012336 (2008).

    Article  Google Scholar 

  7. M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82(3), 2313 (2010).

    Article  Google Scholar 

  8. M. S. Shahriar, G. S. Pati, and K. Salit, Phys. Rev. A 75(2), 022323 (2007).

    Article  Google Scholar 

  9. Sergey A. Moiseev, Sergey N. Andrianov, and Firdus F. Gubaidullin, Solid state multi-ensemble quantum computer in waveguide circuit model. Technical Report arXiv:1009.5771, Cornell University Library (2010).

    Google Scholar 

  10. Sergey N. Andrianov and Sergey A. Moiseev, Electronic Proceedings in Theoretical Computer Science 52, 13 (2011).

    Article  Google Scholar 

  11. Sergey A. Moiseev, Sergey N. Andrianov, and Firdus F. Gubaidullin, Laser Physics 21, 1503 (2011).

    Article  Google Scholar 

  12. Sergey N. Andrianov and Sergey A. Moiseev, Optics and Spectroscopy 112(3), 394 (2012).

    Article  Google Scholar 

  13. L.-M. Duan and H. J. Kimble, Phys. Rev. Lett. 92(12), 127902 (2004).

    Article  Google Scholar 

  14. Takao Aoki, Barak Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, Nature 443(7112), 671 (2006).

    Article  Google Scholar 

  15. J. Majer, J. M. Chow, J. M. Gambetta, Jens Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M.H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature 449(7161), 443 (2007).

    Article  Google Scholar 

  16. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, Physical Review Letters 83(20), 4204 (1999).

    Article  Google Scholar 

  17. Norbert Schuch and Jens Siewert, Phys. Rev. A 67, 032301 (2003).

    Article  MathSciNet  Google Scholar 

  18. David P. DiVincenzo, Dave Bacon, Julia Kempe, Guido Burkard, and K. Birgitta Whaley, Nature 408, 339 (2000).

    Article  Google Scholar 

  19. Dave Bacon, Julia Kempe, Daniel A. Lidar, and K. Birgitta Whaley, Phys. Rev. Lett. 85(8), 1758 (2000).

    Article  Google Scholar 

  20. Julia Kempe, Dave Bacon, Daniel A. Lidar, and K. Birgitta Whaley, Phys. Rev. A 63(4), 042307 (2001).

    Article  Google Scholar 

  21. Julia Kempe, Dave Bacon, David P. DiVincenzo, and K. Birgitta Whaley, Encoded universality from a single physical interaction. In R. Clark, G. Milburn, R. Hughes, A. Imamoglu, and P. Delsing, editors, Quantum Computation and Information, volume 1 (Rinton Press, New Jersey, 2001).

    Google Scholar 

  22. Julia Kempe and K. Birgitta Whaley, Phys. Rev. A 65(5), 052330 (2002).

    Article  Google Scholar 

  23. Jeremy Levy, Phys. Rev. Lett. 89(14), 147902 (2002).

    Article  MathSciNet  Google Scholar 

  24. Sergey A. Moiseev and Sergey N. Andrianov, Journal of Physics B: Atomic, Molecular and Optical Physics 45(12), (2012).

    Google Scholar 

  25. Farid Ablayev and Alexander Vasiliev, Electronic Proceedings in Theoretical Computer Science 9, 1 (2009).

    Article  Google Scholar 

  26. Farid Ablayev and Alexander Vasiliev, Classical and quantum parallelism in the quantum fingerprinting method. In Lecture Notes in Computer Science, volume 6873 (Springer, 2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M. Ablayev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ablayev, F.M., Andrianov, S.N., Moiseev, S.A. et al. Quantum computer with atomic logical qubits encoded on macroscopic three-level systems in common quantum electrodynamic cavity. Lobachevskii J Math 34, 291–303 (2013). https://doi.org/10.1134/S1995080213040094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080213040094

Keywords and phrases

Navigation