Lobachevskii Journal of Mathematics

, Volume 31, Issue 3, pp 262–270 | Cite as

A subclass of harmonic functions with varying arguments defined by hypergeometric functions

  • K. VijayaEmail author
  • G. Murugusundaramoorthy


We define the generalized Dziok-Srivastava operator for harmonic functions and introduce a new subclass of complex valued harmonic functions which are orientation preserving and univalent in the open unit disc. We investigate the coefficient bounds, distortion inequalities and extreme points for this generalized class of functions.

Key words and phrases

Harmonic univalent starlike functions Dziok-Srivastava operator distortion bounds extreme points uniformly convex functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Avici and E. Zlotkiewicz On harmonic univalent mappings Ann. Univ. Marie Curie-Sklodowska Sect. A44, 1 (1990).Google Scholar
  2. 2.
    J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A.I. Math. 9, 3 (1984).zbMATHMathSciNetGoogle Scholar
  3. 3.
    J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Intergral Transform Spec. Funct. 14, 7 (2003).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Dziok and Raina, Families of analytic functions associated with the Wright generalized hypergeometric function, Demonstratio Math. 37(3), 533 (2004).zbMATHMathSciNetGoogle Scholar
  5. 5.
    A.W. Goodman, On uniformly convex functions, Ann. polon. Math. 56, 87 (1991).zbMATHMathSciNetGoogle Scholar
  6. 6.
    J. M. Jahangiri and H. Silverman, Harmonic univalent functions with varying rrguments, Internat. J. Appl. Math. 8, 267 (2002).zbMATHMathSciNetGoogle Scholar
  7. 7.
    J.M. Jahangiri, Harmonic functions starlike in the unit disc., J. Math. Anal. Appl. 235, 470 (1999).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Starlikeness of Rucheweyh type harmonic univalent functions, J. Indian Acad. Math. 26, 191 (2004).zbMATHMathSciNetGoogle Scholar
  9. 9.
    G. Murugusundaramoorthy, A class of Ruscheweyh-Type harmonic univalent functions with varying arguments, Southwest J. Pure Appl. Math. 2, 90 (2003).MathSciNetGoogle Scholar
  10. 10.
    G. Murugusundaramoorthy and K. Vijaya, A Subclass of harmonic functions associated with Wright’s hypergeometric functions, Adv. Stud. Contemp. Math. (Kyungshang) 18(1), 87 (2009).zbMATHMathSciNetGoogle Scholar
  11. 11.
    F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118, 189 (1993).MathSciNetGoogle Scholar
  12. 12.
    S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81, 521 (1981).zbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.School of Advanced SciencesV I T UniversityVelloreIndia

Personalised recommendations