Skip to main content
Log in

Cassia Fistula–Assisted Green Synthesis, Characterization and Their Antimicrobial Activity of Zinc Oxide ZnO Nanomaterial’s an Intracanal Microbial Agent on Oral Dental Caries

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Natural plant-based materials have several advantages. They are biodegradable, biocompatible, non-toxic, cost-effective, and easily available. It can undergo chemical modification such as capping and stabilizing agent as well. Bio convivial and compatible approaches are made to utilize the renewable source of extract of Cassia fistula as efficient capping and stabilizing agent to prepare zinc oxide nanomaterial. Biogenic way to synthesize the ZnO nanoparticles involves aqueous extract of plant material. The extract along with 20 mL of aqueous solution of zinc acetate (0.2 M) stirred for an hour at pH 12 maintain by addition of NaOH (0.4 M) at room temperature under vigorous stirring for 2 h, which resulted in the formation of a white suspension ZnO nanoparticles. A ZnO nanoparticle prepared by chemical method characterized by XRD, FTIR, FE-SEM and EDAX clearly indicates rod shaped nanoparticles. Whereas, the biosynthesized ZnO nanoparticles using aqeous extract of Cassia fistula flower shows Cluster of rods less than 0.5 µm and ZnO nanoparticles using aqeous extract of Cassia fistula stem shows flat layered pentagonal structure with deposition of particles which was less than1µm with weak physical force.In vitro antibacterial activity of ZnO nanomaterial’s shows maximum zone of inhibition for nanoparticles prepared from stem (CFS-ZnO nanoparticles) against Proteusmirabilis, Staphyllococcusalbus, and Lactobacillus. Antifungal activity of ZnO nanomaterial shows maximum zone of inhibition for nanoparticles prepared from stem (CFS-ZnO nanoparticles). In case of the ZnO nanoparticles prepared by green synthesis shows potency compared to ZnO nanoparticles prepares as it is against S. mutans reported for the first time The ZnO nanoparticles prepared from the green route can be formulated in the form of a mouth wash, or as an intracanal medicament where an antimicrobial agent is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. J. Santhoshkumar, S. Venkat Kumar, and S. Rajeshkumar, Res. Eff. Technol. 3, 459 (2017). https://doi.org/10.1016/j.reffit.2017.05.001

    Article  Google Scholar 

  2. K. Rahiman, D. Mahendiran, G. Subash, et al., Bionanoscience 7, 530 (2017). https://doi.org/10.1007/s12668-017-0418-y

    Article  Google Scholar 

  3. S. Lakshmi, R. Bai, R. Sharanagouda, and H. U. Nidoni, Green Chem. Tech. Lett. 3, 26 (2017). https://doi.org/10.18510/gctl.2017.321

    Article  Google Scholar 

  4. D. S. Cha and M. S. Chinnan, Crit. Rev. Food Sci. Nutr. 44, 223 (2004). PMID: https://doi.org/10.1080/1040869049046427615462127

    Article  CAS  Google Scholar 

  5. K. Sri Sindhura, N. Tollamadugu, K. Prasad, et al., Appl. Nanosci. 4, 819 (2014). https://doi.org/10.1007/s13204-013-0263-4

    Article  CAS  Google Scholar 

  6. N. Cioffi, L. Torsi, N. Ditaranto, et al., Chem. Mater. 17, 5255 (2005) https://doi.org/10.1021/cm0505244

    Article  CAS  Google Scholar 

  7. L. Huang, D. Li, Y. Lin, et al., J. Inorg. Biochem. 99, 986 (2005). PMID: https://doi.org/10.1016/j.jinorgbio.2004.12.02215833320

    Article  CAS  Google Scholar 

  8. T. Jamieson, R. Bakhshi, D. Petrova, et al., Biomaterials 28, 4717 (2007). PMID: https://doi.org/10.1016/j.biomaterials.2007.07.01417686516

    Article  CAS  Google Scholar 

  9. K. Y. Kim, Nanomedicine 3, 103 (2007). . PMID: https://doi.org/10.1016/j.nano.2006.12.00217442621

    Article  CAS  Google Scholar 

  10. A. Kiruthiga, T. Krishnakumar, and R. Kannan, AIP Conf. Proc. 2142, 150017 (2019). https://doi.org/10.1063/1.5122566

    Article  CAS  Google Scholar 

  11. R. Wahab, Y. S. Kim, I. H. Hwang, and H. Shin, Synth. Met. 159, 2443 (2009). https://doi.org/10.1016/j.synthmet.2009.08.006

    Article  CAS  Google Scholar 

  12. Y. W. Heo, S. J. Park, K. Ip, et al., Appl. Phys. Lett. 83, 1128 (2003). https://doi.org/10.1063/1.1594835

    Article  CAS  Google Scholar 

  13. B. J. Jin, S. H. Bae, S. Y. Leem, and S. Im, Mater. Sci. Eng. B 71, 301 (2000). https://doi.org/10.1016/S0921-5107(99)00395-5

    Article  Google Scholar 

  14. S. Chung, J. Yu, and J. R. Heath, Appl. Phys. Lett. 76, 2068 (2000). https://doi.org/10.1063/1.126257

    Article  CAS  Google Scholar 

  15. E. Mohammadi, M. Aliofkhazraei, M. Hasanpoor, and M. Chipara, Crit. Rev. Solid State Mater. Sci. 43, 475 (2018). https://doi.org/10.1080/10408436.2017.1397501

    Article  CAS  Google Scholar 

  16. G. Sberveglieri, S. Groppelli, P. Nelli, et al., Sens. Actuators, B 25, 588 (1995). https://doi.org/10.1016/0925-4005(95)85128-3

    Article  CAS  Google Scholar 

  17. Zhong Lin Wang, Mater. Today 7, 26 (2004). https://doi.org/10.1016/S1369-7021(04)00286-X

    Article  Google Scholar 

  18. J. A. Rodriguez, T. Jirsak, J. Dvorak, and S. Sambasivan, J. Phys. Chem. B 104, 319 (2000). https://doi.org/10.1021/jp993224g

    Article  CAS  Google Scholar 

  19. S. Chandramouleeswaran, S. Mhaske, A. Kathe, et al., Nanotechnology 18, 385702 (2007). https://doi.org/10.1088/0957-4484/18/38/385702

    Article  CAS  Google Scholar 

  20. V. K. Shukla, R. P. Singh, and A. C. Pandey, J. Alloys Compd. 507, L13–L16 (2010). https://doi.org/10.1016/j.jallcom.2010.07.156

    Article  CAS  Google Scholar 

  21. A. M. J.-B. Kidd, Essentials of Dental Caries: The Disease and its Management, 3rd ed. (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  22. S. Thomas, S. Tandon, and S. Nair, J. Ind. Soc. Pedod. Prev. Dent. 18, 115 (2000). PMID: 11324201

    CAS  Google Scholar 

  23. T. Nitta, T. Arai, et al., J. Health Sci. 48, 273 (2002). https://doi.org/10.1248/jhs.48.273

    Article  CAS  Google Scholar 

  24. W. J. Loesche, Microbiol. Rev. 50, 353 (1986). PMID: 3540569

    Article  CAS  Google Scholar 

  25. R. Deshpande, A. Kulkarni, et al., J. Pharm. Res. 4, 3427 (2011).

    Google Scholar 

  26. R. Deshpande, A. Kulkarni, et al., Int. J. Compr. Pharm. 02, 1 (2011). http://journaldatabase.info/journal/issn0976-8157

  27. M. Jadhav, R. Deshpande, et al., Int. J. Biol., Pharm. Allied Sci. 1, 444 (2012).

  28. J. J. Biemer, Ann. Clin. Lab. Sci. 3, 135 (1973). PMID: 4575155

    CAS  Google Scholar 

  29. S. Talam, S. Karumuri, and N. Gunnam, Int. Sch. Res. Not., No. 372505, 6 (2012). https://doi.org/10.5402/2012/372505

  30. Z. M. Khoshhesab, M. Sarfaraz, and M. A. Asadabad, Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 41, 814 (2011). https://doi.org/10.1080/15533174.2011.591308

    Article  CAS  Google Scholar 

  31. JCPDS, Powder Diffraction File, Alphabetical Index, Inorganic Compounds (Int. Centre Diffraction Data, Newtown Square, PA, 1977). http://worldcat.org/identities/lccn-n78034812.

  32. B. D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1967). https://www.worldcat.org/title/elements-of-x-ray-diffraction/oclc/256038237.

    Google Scholar 

  33. O. Oprea, E. Andronescu, et al., Digest J. Nanomater. Biostruct. 6, 1393 (2011).

    Google Scholar 

  34. A. Mohan and B. Renjanadevi, Proc. Tech. 24, 761 (2016). https://doi.org/10.1016/j.protcy.2016.05.078

    Article  Google Scholar 

  35. G. Sangeetha, S. Rajeshwari, and V. Rajendran, Mater. Res. Bull. 46, 2560 (2011). https://doi.org/10.1016/j.materresbull.2011.07.046

    Article  CAS  Google Scholar 

  36. D. Gnanasangeetha and D. Thambavani, J. Chem., Biol. Phys. Sci. 4, 238 (2013). https://www.jcbsc.org/admin/get_filebio.phpıd=215

  37. L. F. A. Anand Raj and Jayalakshmy E. Ori, J. Chem. 31, 51 (2015). https://doi.org/10.13005/ojc/310105

    Article  Google Scholar 

  38. F. Mirhosseini, M. Amiri, et al., Front. Dent. 16, 105 (2019) https://doi.org/10.18502/fid.v16i2.1361

    Article  Google Scholar 

  39. B. Ramazanzadeh, A. Jahanbin, et al., J. Dent. (Shiraz) 16, 200 (2015).

Download references

ACKNOWLEDGMENTS

The authors are thankful to the principal, S.P. College, Pune-411030, India for providing the necessary facility and are grateful to the University Grant Commission for financial support under Minor Research Project scheme (F.47- 1119/14 /General/ 45/ WRO–XII Plan). Dr. Rahul Deshpande’s Oral Health clinic, India for valuable support to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sucheta Gaikwad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaikwad, S., Torane, R. & Parthibavarman, M. Cassia Fistula–Assisted Green Synthesis, Characterization and Their Antimicrobial Activity of Zinc Oxide ZnO Nanomaterial’s an Intracanal Microbial Agent on Oral Dental Caries. Nanotechnol Russia 15, 760–769 (2020). https://doi.org/10.1134/S199507802006021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507802006021X

Navigation