Skip to main content
Log in

Nanoscale Pt–SnO2 Heteroclusters in Electrocatalysts for Oxygen Reduction and Methanol Oxidation Reactions

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Nanostructured platinum-based electrocatalysts modified with tin dioxide (SnO2) are studied for their performance in highly efficient oxidation of an alcohol additive (methanol) to the hydrogen flow in fuel cells with proton exchange membrane designed for operation in low temperature conditions (to –50°C). The activity of electrocatalysts in the oxygen reduction reaction (ORR) and the methanol oxidation reaction is studied by the rotating disk electrode technique. The catalysts Pt20/10 wt %–SnO2/C and Pt20/C exhibit higher ORR activity (specific activity around 0.25 mA/cm2) than Pt40/C in a 0.1 M HClO4 solution. The activity of catalyst Pt20/10 wt %–SnO2/C nearly doubles in a solution containing methanol at 4 wt %, suggesting its high activity in methanol oxidation reaction. For the platinum in Pt20/10 wt %–SnO2/C, the electrochemical active surface area is 58 m2/g, which exceeds this parameter for Pt40/C (43 m2/g). Nanoscale Pt–SnO2 heteroclusters in the electrocatalyst Pt20/10 wt %–SnO2/C ensure its high activity in the electrooxidation reactions of both methanol and hydrogen, and they are also effective as a catalyst for the anode. Their high ORR activity, along with improved durability, compared to Pt40/C and Pt20/C catalysts, ensures their efficiency as cathode catalysts in fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Autonomous Non–Commercial Organization 'International Sustainable Energy Development Centre’ under the auspices of UNESCO. http://www.isedc–u.com/1248–dostup–k–energii.html.

  2. S. Golubchikov, Energy 11, 35 (2002).

    Google Scholar 

  3. M. K. Debe, Nature (London, U.K.) 486, 43 (2012). https://doi.org/10.1038/nature11115

    Article  CAS  Google Scholar 

  4. M. Amjadi, S. Rowshanzamir, S. J. Peighambardoust, and S. Sedghi, J. Power Sources 210, 350 (2012). https://doi.org/10.1016/j.jpowsour.2012.03.011

    Article  CAS  Google Scholar 

  5. Z. F. Pan, L. An, and C. Y. Wen, Appl. Energy 240, 473 (2019). https://doi.org/10.1016/j.apenergy.2019.02.079

    Article  Google Scholar 

  6. D. Banham and S. Ye, ACS Energy Lett. 2, 629 (2017). https://doi.org/10.1021/acsenergylett.6b00644

    Article  CAS  Google Scholar 

  7. M. T. Anwar, X. Yan, M. R. Asghar, et al., Int. J. Energy Resour. 43, 1 (2018).

    Google Scholar 

  8. D. Chakraborty, H. Bischoff, I. Chorkendorff, and T. Johannessen, J. Electrochem. Soc. 152, 2357 (2005). https://doi.org/10.1149/1.2109547

    Article  CAS  Google Scholar 

  9. E. H. Jung, U. H. Jung, T. H. Yang, et al., Int. J. Hydrogen Energy 32, 903 (2007). https://doi.org/10.1016/j.ijhydene.2006.12.014

    Article  CAS  Google Scholar 

  10. F. Knorr, D. G. Sanchez, J. Schirmer, et al., Appl. Energy 238, 1 (2019). https://doi.org/10.1016/j.apenergy.2019.01.036

    Article  CAS  Google Scholar 

  11. D. D. Spasov, N. A. Ivanova, A. S. Pushkarev, et al., Catalysts 9, 803 (2019). https://doi.org/10.3390/catal9100803

    Article  CAS  Google Scholar 

  12. Y. Nakazato, D. Kawachino, Z. Noda, et al., J. Electrochem. Soc. 165, 1154 (2018). https://doi.org/10.1149/2.0311814jes

    Article  CAS  Google Scholar 

  13. L. Du, Y. Shao, J. Sun, et al., Nano Energy 29, 314 (2016). https://doi.org/10.1016/j.nanoen.2016.03.016

    Article  CAS  Google Scholar 

  14. L. A. Frolova, Y. A. Dobrovolsky, and N. G. Bukun, Rus. J. Electrochem. 47, 697 (2011). doi.org/https://doi.org/10.1134/S1023193511060024

    Article  CAS  Google Scholar 

  15. K. Zhang, C. Feng, B. He, et al., J. Electroanal. Chem. 781, 198 (2016). doi.org/https://doi.org/10.1016/j.jelechem.2016.11.002

    Article  CAS  Google Scholar 

  16. L. Jiang, G. Sun, Z. Zhou, et al., J. Phys. Chem. 109, 8774 (2005). https://doi.org/10.1021/jp050334g

    Article  CAS  Google Scholar 

  17. F. Labbé, T. Asset, M. Chatenet, et al., Electrocatalysis 10, 156 (2019). https://doi.org/10.1007/s12678-018-0505-z

    Article  CAS  Google Scholar 

  18. A. Kowal, S. L. Gojković, K.–S. Lee, et al., Electrochem. Commun. 11, 724 (2009). https://doi.org/10.1016/j.elecom.2009.01.022

    Article  CAS  Google Scholar 

  19. N. Zhang, S. Zhang, C. Du, et al., Electrochim. Acta 117, 413 (2014). https://doi.org/10.1016/j.electacta.2013.11.139

    Article  CAS  Google Scholar 

  20. S. Hussain, N. Kongi, H. Erikson, et al., Electrochim. Acta 316, 162 (2019). https://doi.org/10.1016/j.electacta.2019.05.104

    Article  CAS  Google Scholar 

  21. I. Jiménez-Morales, S. Cavaliere, D. Jones, and J. Rozière, Phys. Chem. Chem. Phys. 20, 8765 (2018). https://doi.org/10.1039/C8CP00176F

    Article  Google Scholar 

  22. M. Yin, J. Xu, Q. Li, et al., Appl. Catal., A 144, 112 (2014). https://doi.org/10.1016/j.apcatb.2013.07.007

  23. G. Yang, L. M. Namin, N. Aaron Deskins, and X. Teng, J. Catal. 353, 335 (2017). https://doi.org/10.1016/j.jcat.2017.07.033

    Article  CAS  Google Scholar 

  24. S. A. Grigoriev, P. Millet, and V. N. Fateev, J. Power Sources 177, 281 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.072

    Article  CAS  Google Scholar 

  25. N. A. Ivanova, O. K. Alekseeva, V. N. Fateev, et al., Int. J. Hydrogen Energy 44, 29529 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.096

    Article  CAS  Google Scholar 

  26. Ya. Koutetskii and V. G. Levich, Dokl. Akad. Nauk 117, 441 (1957).

    CAS  Google Scholar 

  27. Y. Garsany, O. A. Baturina, and K. E. Swider-Lyons, ACS Publ., 6321 (2010). doi.org/https://doi.org/10.1021/ac100306c

  28. H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, Appl. Catal., B 56, 9 (2005). https://doi.org/10.1016/j.apcatb.2004.06.021

    Article  CAS  Google Scholar 

  29. Y. Garsany, I. L. Singer, and K. E. Swider-Lyons, J. Electroanal. Chem. 662, 396 (2011). https://doi.org/10.1016/j.jelechem.2011.09.016

    Article  CAS  Google Scholar 

  30. N. Zhang, S. Zhang, C. Du, et al., Electrochim. Acta 117, 413 (2014). https://doi.org/10.1016/j.electacta.2013.11.139

    Article  CAS  Google Scholar 

  31. A. S. Pushkarev, I. V. Pushkareva, N. A. Ivanova, et al., Catalysts 9, 271 (2019). doi.org/https://doi.org/10.3390/catal9030271

    Article  CAS  Google Scholar 

  32. W. He, J. Liu, Y. Qiao, et al., J. Power Sources 195, 1046 (2010). https://doi.org/10.1016/j.jpowsour.2009.09.006

    Article  CAS  Google Scholar 

  33. R. C. Koffi, C. Coutanceau, E. Garnier, et al., Electrochim. Acta 50, 4117 (2005). https://doi.org/10.1016/j.electacta.2005.01.028

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 20-08-00927, 18-29-23030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Spasov.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spasov, D.D., Mensharapov, R.M., Zasypkina, A.A. et al. Nanoscale Pt–SnO2 Heteroclusters in Electrocatalysts for Oxygen Reduction and Methanol Oxidation Reactions. Nanotechnol Russia 15, 723–729 (2020). https://doi.org/10.1134/S1995078020060191

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060191

Navigation