Skip to main content
Log in

Synergism of the Cytopathic Effect of Synchrotron Radiation and Manganese Oxide Nanoparticles on the Growth of Human Glioblastoma Cells In Vitro

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A binary cytopathic effect (CPE%) of synchrotron radiation (SR) and manganese oxide nanoparticles (MnO NP) on human glioblastoma U87MG, U-251MG, and A-172 cell lines was studied in vitro. After incubation of the cells with MnO NP at a concentration of 5 and 50 µmol for 18–24 h, irradiation of glioblastoma cells at the source of SR VEPP-4 was carried out. X-ray irradiation doses 0, 1, 2, 4 Gy were used. The results were estimated using a light microscopy, determination of CPE% on the counter (Countess, Invitrogen), and the clonogenic test. It was revealed that the preliminary incubation of glioblastoma cell lines with MnO NP causes an increase in CPE of external SR at a dose 1, 2, and 4 Gy on the glioblastoma cells by 25, 50, and 100%. This effect allows to reduce the radiation dose by 2–3 times, maintaining the efficiency of the effect. At the same time, the period of vital activity of tumor cells under a combined effect of SR and NP is reduced by 18–36 h. Probably, a synergism of the combination of MnO NP and SR will provide new opportunities for the development of a model for the treatment of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Frosina, Crit. Rev. Oncol. Hematol. 96, 257 (2015). https://doi.org/10.1016/j.critrevonc.2015.05.013

    Article  Google Scholar 

  2. R. M. Young, A. Jamshidi, G. Davis, and J. H. Sherman, Ann. Transl. Med. 9, 121 (2015). https://doi.org/10.3978/j.issn.2305-5839.2015.05.10

    Article  Google Scholar 

  3. Q. T. Ostrom, H. Gittleman, P. Liao, et al., Neuro Oncol. 16, 1 (2014). https://doi.org/10.1093/neuonc/nou223

    Article  Google Scholar 

  4. Q. T. Ostrom, H. Gittleman, G. Truitt, et al., Neuro Oncol. 20, 1 (2018). https://doi.org/10.1093/neuonc/noy131

    Article  Google Scholar 

  5. A. B. Mariotto, K. R. Yabroff, Y. Shao, et al., J. Natl. Cancer. Inst. 103, 117 (2011). https://doi.org/10.1093/jnci/djq495

    Article  Google Scholar 

  6. S. E. Noda, A. El-Jawahri, D. Patel, et al., Semin. Radiat. Oncol. 19, 171 (2009). https://doi.org/10.4103/0971-5851.103142

    Article  Google Scholar 

  7. L. Khan, H. Soliman, A. Sahgal, et al., Cochrane Database Syst. Rev. 19 (8), 1 (2016). https://doi.org/10.1002/14651858.CD011475.pub2

    Article  Google Scholar 

  8. V. Calugaru, N. Magné, J. Hérault, et al., Bull. Cancer 102, 83 (2015). https://doi.org/10.1016/j.bulcan.2014.10.002

    Article  Google Scholar 

  9. A. Stepanovic and M. Nikitovic, J. BUON 23, 7 (2018).

    Google Scholar 

  10. M. Yamada, M. Foote, and T. W. Prow, Wiley Interdiscipl. Rev. Nanomed. Nanobiotechnol. 7, 428 (2015). https://doi.org/10.1002/wnan.1322

    Article  CAS  Google Scholar 

  11. P. Liu, H. Jin, Z. Guo, et al., Int. J. Nanomed. 11, 5003 (2016). https://doi.org/10.2147/IJN.S115473

    Article  CAS  Google Scholar 

  12. H. Wu, J. Lin, P. Liu, et al., Biomaterials 101, 1 (2016). https://doi.org/10.1016/j.biomaterials.2016.05.031

    Article  CAS  Google Scholar 

  13. R. Raliya, C. T. Singh, K. Haddad, and P. Biswas, Curr. Pharm. Des. 22, 2481 (2016). https://doi.org/10.2174/1381612822666160307151409

    Article  CAS  Google Scholar 

  14. S. Aftab, A. Shaha, A. Nadhman, et al., Int. J. Pharm. 540, 132 (2018). https://doi.org/10.1016/j.ijpharm.2018.02.007

    Article  CAS  Google Scholar 

  15. C. Ozada, V. Tekin, F. B. Barlas, et al., Chem. Sel. 5, 1987 (2020). https://doi.org/10.1002/slct.201901620

    Article  CAS  Google Scholar 

  16. X. Cai, Q. Zhu, Y. Zeng, et al., Int. J. Nanomed. 14, 8321 (2019). https://doi.org/10.2147/IJN.S218085

    Article  CAS  Google Scholar 

  17. K. E. Kuper, E. L. Zavjalov, I. A. Razumov, et al., Phys. Proc. 84, 252 (2016). https://doi.org/10.1016/j.phpro.2016.11.043

    Article  CAS  Google Scholar 

  18. E. L. Zav’yalov, I. A. Razumov, L. A. Gerlinskaya, and A. V. Romashchenko, Vavilov. Zh. Genet. Selekts. 19 (4), 77 (2015). https://doi.org/10.18699/VJ15.061

    Article  Google Scholar 

  19. I. A. Razumov, E. L. Zav’yalov, S. Yu. Troitskii, et al., Klet. Tekhnol. Biol. Med., No. 2, 114 (2017). https://doi.org/10.1007/s10517-017-3849-0

  20. M. V. Petoukhov, P. V. Konarev, A. G. Kikhneya, and D. I. Svergun, J. Appl. Crystallogr. 40, 223 (2007). https://doi.org/10.1107/S0021889807002853

    Article  CAS  Google Scholar 

  21. G. Baranov, V. Borin, A. Zhuravlev, et al., J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 14, 150 (2020). https://doi.org/10.1134/S1027451020020032

    Article  CAS  Google Scholar 

  22. O. Evdokov, V. Titov, B. Tolochko, and M. Sharafutdinov, Nucl. Instrum. Methods Phys. Res. 603, 194 (2009). https://doi.org/10.1016/j.nima.2009.03.001

    Article  CAS  Google Scholar 

  23. Guidelines for Experimental (Preclinical) Study of New Pharmacological Substances, Ed. by V. P. Fisenko (Remedium, Moscow, 2000) [in Russian].

    Google Scholar 

  24. N. A. P. Franken, H. M. Rodermond, J. Stap, et al., Nat. Protoc. 1, 2315 (2006). https://doi.org/10.1038/nprot.2006.339

    Article  CAS  Google Scholar 

  25. S. Y. Troitskii, A. L. Chuvilin, D. I. Kochubei, B. N. Novgorodov, V. N. Kolomiichuk, and V. A. Li-kholobov, Russ. Chem. Bull. 44, 1822 (1995). https://doi.org/10.1007/BF00707203

    Article  Google Scholar 

  26. M. J. Ramírez-Expósito and J. M. Martínez-Martos, Curr. Neuropharmacol. 17, 342 (2019). https://doi.org/10.2174/1570159X16666180302120925

    Article  Google Scholar 

  27. G. Basati, M. Khaksarian, S. Abbaszadeh, et al., Stem Cell Invest. 6 (38), 1 (2019). https://doi.org/10.21037/sci.2019.10.07

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were performed using the equipment of the Center for Collective Use “Center for Genetic Resources of Laboratory Animals” of Federal Research Center Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences. The studies of MnO NP were performed using the equipment of the Center for Collective Use “National Center for Catalyst Research.”

Funding

These  studies  were  supported by Ministry of Science and Higher Education of Russian Federation (project no. 0324-2019-0041, unique project identifier RFMEFI62119X0023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. A. Razumov, S. Yu. Troitsky, E. L. Zavjalov, O. I. Solovieva, B. G. Goldenberg, A. A. Legkodymov, A. G. Lemzyakov or K. E. Kuper.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razumov, I.A., Troitsky, S.Y., Zavjalov, E.L. et al. Synergism of the Cytopathic Effect of Synchrotron Radiation and Manganese Oxide Nanoparticles on the Growth of Human Glioblastoma Cells In Vitro. Nanotechnol Russia 15, 819–827 (2020). https://doi.org/10.1134/S1995078020060166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060166

Navigation