Skip to main content
Log in

Plasma Nitrogen Doping of Nanostructured Reduced Graphene Oxide

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Carbon nanomaterials doped with heteroatoms, in particular, nitrogen atoms, are of great interest for electrochemical power engineering as nonmetallic catalysts or carriers of catalytically active metal nanoparticles. A nanostructured, reduced graphene oxide modified with nitrogen in a gas discharge plasma in a vacuum chamber of a magnetron-ion sputtering facility is considered. It is shown that plasma treatment of reduced graphene oxide does not cause undesirable morphological changes in the structure of carbon nanomaterial, but it leads to the incorporation of nitrogen atoms into the structure of reduced graphene oxide with the formation of pyridine-, pyrrole-, and graphite-like configurations. The application of pulsed negative bias voltages of various magnitudes to the substrate with the sample increases the concentration of nitrogen atoms to 2.6 at % and also promotes an increase in the proportion of nitrogen atoms in the pyridine form and a slight decrease in the proportion of atoms in the pyrrole form. The results allow for considering the obtained carbon nanomaterials for use as components of electrochemical devices, for example, fuel cells, in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Z.-L. Xu, J.-K. Kim, and K. Kang, Nano Today 19, 84 (2018). https://doi.org/10.1016/j.nantod.2018.02.006

    Article  CAS  Google Scholar 

  2. T. Chen and L. Dai, Mater. Today. 16, 272 (2013). https://doi.org/10.1016/j.mattod.2013.07.002

    Article  CAS  Google Scholar 

  3. E. Antolini, Appl. Catal. B 88, 1 (2009). https://doi.org/10.1016/j.apcatb.2008.09.030

    Article  CAS  Google Scholar 

  4. I. V. Pushkareva, A. S. Pushkarev, S. A. Grigoriev, E. K. Lyutikova, S. V. Akel’kina, M. A. Osina, E. P. Slavcheva, and V. N. Fateev, Russ. J. Appl. Chem. 89, 2109 (2016).

    Article  CAS  Google Scholar 

  5. P. Trogadas, T. F. Fuller, and P. Strasser, Carbon 75, 5 (2014). https://doi.org/10.1016/j.carbon.2014.04.005

    Article  CAS  Google Scholar 

  6. L. Du, Y. Shao, J. Sun, et al., Nano Energy 29, 314 (2016). https://doi.org/10.1016/j.nanoen.2016.03.016

    Article  CAS  Google Scholar 

  7. D. D. Spasov, N. A. Ivanova, A. S. Pushkarev, et al., Catalysts 9, 803 (2019). https://doi.org/10.3390/catal9100803

    Article  CAS  Google Scholar 

  8. I. E. Baranov, V. I. Porembskii, E. K. Lyutikova, et al., Chem. Probl. 17, 489 (2019). https://doi.org/10.32737/2221-8688-2019-4-489-499

    Article  Google Scholar 

  9. S. V. Tkachev, E. Y. Buslaeva, A. V. Naumkin, et al., Inorg. Mater. 48, 796 (2012). https://doi.org/10.1134/S0020168512080158

    Article  CAS  Google Scholar 

  10. J. W. Chiou, S. C. Ray, S. I. Peng, et al., J. Phys. Chem. C 116, 16251 (2012). https://doi.org/10.1021/jp303465u

    Article  CAS  Google Scholar 

  11. A. Ambrosi and M. Pumera, Chem. Eur. J. 22, 153 (2016). https://doi.org/10.1002/chem.201503110

    Article  CAS  Google Scholar 

  12. A. L. Ivanovskii, Russ. Chem. Rev. 81, 571 (2012).

    Article  Google Scholar 

  13. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  14. F. Bonaccorso, L. Colombo, G. Yu, et al., Science (Washington, DC, U. S.) 347 (6217), 1246501 (2015). https://doi.org/10.1126/science.1246501

    Article  CAS  Google Scholar 

  15. S. Shahgaldi and J. Hamelin, Carbon 94, 705 (2015). https://doi.org/10.1016/j.carbon.2015.07.055

    Article  CAS  Google Scholar 

  16. J. Liu, H. J. Choi, and L.-Y. Meng, J. Ind. Eng. Chem. 64, 1 (2018). https://doi.org/10.1016/j.jiec.2018.02.021

    Article  CAS  Google Scholar 

  17. H. Wang, T. Maiyalagan, and X. Wang, ACS Catal. 2, 781 (2012). https://doi.org/10.1021/cs200652y

    Article  CAS  Google Scholar 

  18. J. Duan, S. Chen, M. Jaroniec, and S. Z. Qiao, ACS Catal. 5, 5207 (2015). https://doi.org/10.1021/acscatal.5b00991

    Article  CAS  Google Scholar 

  19. Y. Chen, J. Wang, H. Liu, et al., J. Phys. Chem. C 115, 3769 (2011). https://doi.org/10.1021/jp108864y

    Article  CAS  Google Scholar 

  20. K. Jukk, N. Kongi, P. Rauwel, et al., Electrocatalysis 7, 428 (2016). https://doi.org/10.1007/s12678-016-0322-1

    Article  CAS  Google Scholar 

  21. Y. Deng, Y. Xie, K. Zou, and X. Ji, J. Mater. Chem. A 4, 1144 (2016). https://doi.org/10.1039/C5TA08620E

    Article  CAS  Google Scholar 

  22. N. A. Kumar, H. Nolan, N. McEvoy, et al., J. Mater. Chem. A 1, 4431 (2013). https://doi.org/10.1039/c3ta10337d

    Article  CAS  Google Scholar 

  23. A. Mueller, M. G. Schwab, N. Encinas, et al., Carbon 84, 426 (2015). https://doi.org/10.1016/j.carbon.2014.11.054

    Article  CAS  Google Scholar 

  24. M. Rybin, A. Pereyaslavtsev, T. Vasilieva, et al., Carbon 96, 196 (2016). https://doi.org/10.1016/j.carbon.2015.09.056

    Article  CAS  Google Scholar 

  25. N. Karthikeyan, B. P. Vinayan, M. Rajesh, et al., Fuel Cells 15, 278 (2015). https://doi.org/10.1002/fuce.201400134

    Article  CAS  Google Scholar 

  26. O. K. Alekseeva, E. K. Lutikova, V. V. Markelov, et al., Int. J. Electrochem. Sci. 13, 797 (2018). https://doi.org/10.20964/2018.01.79

    Article  CAS  Google Scholar 

  27. O. Alekseeva, A. Mikhalev, E. Lutikova, et al., Catalysts 8, 665 (2018). https://doi.org/10.3390/catal8120665

    Article  CAS  Google Scholar 

  28. S. V. Akel’kina, A. S. Pushkarev, S. A. Grigoriev, I. V. Pushkareva, and V. N. Fateev, Russ. J. Electrochem. 54, 251 (2018).

    Article  Google Scholar 

  29. S. A. Grigor’ev, A. S. Pushkarev, V. N. Kalinichenko, I. V. Pushkareva, M. Yu. Presnyakov, and V. N. Fateev, Kinet. Catal. 56, 689 (2015).

    Article  Google Scholar 

  30. O. K. Alexeeva and V. N. Fateev, Int. J. Hydrogen Energy 41, 3373 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.147

    Article  CAS  Google Scholar 

  31. V. N. Fateev, O. K. Alekseeva, V. I. Porembskii, et al., Al’tern. Energet. Ekol., No. 25–27, 88 (2017). https://doi.org/10.15518/isjaee.2017.25-27.088-099

  32. S. Grigoriev, V. Fateev, A. Pushkarev, et al., Materials 11, 1405 (2018). https://doi.org/10.3390/ma11081405

    Article  CAS  Google Scholar 

  33. A. K. Mishra and S. Ramaprabhu, Desalination 282, 39 (2011). https://doi.org/10.1016/j.desal.2011.01.038

    Article  CAS  Google Scholar 

  34. K. S. Kim, Y. Zhao, H. Jang, et al., Nature (London, U.K.) 457 (7230), 706 (2009). https://doi.org/10.1038/nature07719

    Article  CAS  Google Scholar 

  35. Y. J. Oh, J. J. Yoo, Y. Kim Il, et al., Electrochim. Acta 116, 118 (2014). https://doi.org/10.1016/j.electacta.2013.11.040

    Article  CAS  Google Scholar 

  36. J. Ma, A. Habrioux, Y. Luo, et al., J. Mater. Chem. A 3, 11891 (2015). https://doi.org/10.1039/C5TA01285F

    Article  CAS  Google Scholar 

  37. A. Śliwak, B. Grzyb, N. Díez, and G. Gryglewicz, Appl. Surf. Sci. 399, 265 (2017). https://doi.org/10.1016/j.apsusc.2016.12.060

    Article  CAS  Google Scholar 

  38. S. Ratso, I. Kruusenberg, M. Vikkisk, et al., Carbon 73, 361 (2014). https://doi.org/10.1016/j.carbon.2014.02.076

    Article  CAS  Google Scholar 

  39. L. Stobinski, B. Lesiak, A. Malolepszy, et al., J. Electron Spectrosc. Relat. Phenom. 195, 145 (2014). https://doi.org/10.1016/j.elspec.2014.07.003

    Article  CAS  Google Scholar 

  40. C. Botas, P. Álvarez, C. Blanco, et al., Carbon 52, 476 (2013). https://doi.org/10.1016/j.carbon.2012.09.059

    Article  CAS  Google Scholar 

  41. D. Usachov, O. Vilkov, A. Grüneis, et al., Nano Lett. 11, 5401 (2011). https://doi.org/10.1021/nl2031037

    Article  CAS  Google Scholar 

  42. P. Hu, K. Liu, C. P. Deming, and S. Chen, J. Chem. Technol. Biotechnol. 90, 2132 (2015). https://doi.org/10.1002/jctb.4797

    Article  CAS  Google Scholar 

  43. Z. Wu, M. Song, J. Wang, and X. Liu, Catalysts 8, 196 (2018). https://doi.org/10.3390/catal8050196

    Article  CAS  Google Scholar 

  44. L. Zhang and Z. Xia, J. Phys. Chem. C 115, 11170 (2011). https://doi.org/10.1021/jp201991

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.V. Kukueva for obtaining images of the samples by TEM and SEM.

Funding

This study was funded by RFBR according to the research project no. 18-53-53025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pushkarev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushkarev, A.S., Alekseeva, O.K., Pushkareva, I.V. et al. Plasma Nitrogen Doping of Nanostructured Reduced Graphene Oxide. Nanotechnol Russia 15, 735–740 (2020). https://doi.org/10.1134/S1995078020060142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060142

Navigation