Skip to main content
Log in

A Magnetron Sputtering Method for the Application of the Ni Catalyst for the Synthesis Process of Carbon Nanotube Arrays

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A study on the optimization of the method of application of the Ni catalyst for the growth of carbon nanotubes (CNTs) onto the gas diffusion layers (GDLs) (predominantly carbon cloths) by magnetron sputtering is presented. The mode of magnetron sputtering of the Ni catalyst which makes it possible to obtain a uniform metal coating on the GDLs which is required for the successful synthesis of CNTs is selected for the first time. It is shown that the sputtering of Ni in the direct current mode with the supply of pulsed bias voltage to the substrate with a frequency of 100 kHz and time of supply of the negative pulse of 7 µs makes it possible to obtain the optimum nanostructured coating of the metal with a low specific surface and a high degree of uniformity of application onto the entire area of the substrate. The applied Ni coating acts as the catalyst for the growth of CNTs. CNT arrays with the average diameters of 40 and 80 nm for the hydrophobic and hydrophilic GDLs, respectively, are grown on the GDLs with the applied Ni catalyst by pyrolytic gas-phase deposition. The CNT arrays are directly obtained on the entire surface of the carbon substrates with a high degree of uniformity. It is found that the diameter of the nanotubes is mainly determined by the structure of the GDL being used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. Guozhu, L. Xi, D. Huibin, et al., Renewable Sustainable Energy Rev. 48, 276 (2015). https://doi.org/10.1016/j.rser.2015.03.094

    Article  Google Scholar 

  2. D. Chade, T. Miklis, and D. Dvorak, Renewable Energy 76, 204 (2015). https://doi.org/10.1016/j.renene.2014.11.023

    Article  Google Scholar 

  3. C. Ghenai, M. Bettayeb, B. Brdjanin, and A. K. Hamid, Case Stud. Therm. Eng. 14, 100497 (2019). https://doi.org/10.1016/j.csite.2019.100497

    Article  Google Scholar 

  4. H. Gwangwoo, K. K. Yong, B. K. Joong, et al., Appl. Energy 259, 114175 (2020).

    Article  Google Scholar 

  5. N. A. Kelly, T. L. Gibson, and D. B. Ouwerkerk, Int. J. Hydrogen Energy 326, 15803 (2011). https://doi.org/10.1016/j.ijhydene.2011.08.058

    Article  CAS  Google Scholar 

  6. R. Hanke-Rauschenbach, B. Bensmann, and P. Millet, Compendium of Hydrogen Energy, Vol. 1: Hydrogen Production and Purification, Ed. by V. Subramani, A. Basile, and T. Nejat Veziroglu, Woodhead Publ. Series in Energy (Woodhead, Oxford, 2015), p. 179. https://doi.org/10.1016/B978-1-78242-361-4.00007-8

  7. M. S. Mamat, S. A. Grigoriev, K. A. Dzhus, et al., Int. J. Hydrogen Energy 35, 7580 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.147

    Article  CAS  Google Scholar 

  8. P. Mardle, X. Ji, J. Wu, et al., Appl. Catal. B 260, 118031 (2020). https://doi.org/10.1016/j.apcatb.2019.118031

    Article  CAS  Google Scholar 

  9. Yu. V. Plekhanova, S. E. Tarasov, A. G. Bykov, N. V. Prisyazhnaya, T. Kh. Tenchurin, S. N. Chvalun, A. S. Orekhov, A. D. Shepelev, P. M. Gotovtsev, and A. N. Reshetilov, Nanotechnol. Russ. 13, 531 (2018).

    Article  CAS  Google Scholar 

  10. A. Venkataraman, E. V. Amadi, Y. Chen, and C. Papadopoulos, Nanoscale Res. Lett. 14, 47 (2019). https://doi.org/10.1186/s11671-019-3046-3

    Article  CAS  Google Scholar 

  11. A. V. Krestinin, Nanotechnol. Russ. 14, 411 (2019). https://doi.org/10.21517/1992-7223-2019-9-10-18-34

    Article  Google Scholar 

  12. S. V. Bulyarskii, Carbon Nanotubes: Technology, Property Control, Application (Sterzhen’, Ul’yanovsk, 2011) [in Russian].

    Google Scholar 

  13. R. Z. Moghadam Esfahani, S. K. Vankova, and E. Bradley, Renewable Energy 154, 913 (2020). https://doi.org/10.1016/j.renene.2020.03.029

    Article  CAS  Google Scholar 

  14. P. Chinnasa, W. Ponhan, and E. Swatsitang, Mater. Today: Proc. 17, 1344 (2019). https://doi.org/10.1016/j.matpr.2019.06.154

    Article  CAS  Google Scholar 

  15. Y. Show and K. Takahashi, J. Power Sources 190, 322 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.027

    Article  CAS  Google Scholar 

  16. K. A. Shah and B. A. Tali, Mater. Sci. Semicond. Process. 41, 67 (2016). https://doi.org/10.1016/j.mssp.2015.08.013

    Article  CAS  Google Scholar 

  17. J. Lin, Y. Yang, H. Zhang, et al., J. Alloys Compd. 745, 817 (2018). https://doi.org/10.1016/j.jallcom.2018.02.252

    Article  CAS  Google Scholar 

  18. X. Wu, F. Mu, and H. Zhao, J. Mater. Sci. Technol. 55, 16 (2020). https://doi.org/10.1016/j.jmst.2019.05.063

    Article  Google Scholar 

  19. A. V. Eletskii, Phys. Usp. 40, 899 (1997).

    Article  Google Scholar 

  20. P. Salunke, S. Yarmolenko, S. Neralla, et al., in Proceedings of the 14th International Mechanical Engineering Congress IMECE 2007, Seattle, WA, USA, Nov. 11–15, 2007.

  21. Z. Tang, C. K. Poh, Z. Tian, et al., Electrochim. Acta 56, 4327 (2011). https://doi.org/10.1016/j.electacta.2011.01.035

    Article  CAS  Google Scholar 

  22. T. Thurakitseree and C. Pakpum, Appl. Mech. Mater. 891, 195 (2019). https://doi.org/10.4028/www.scientific.net/AMM.891.195

  23. M. Baro, A. A. Hussain, and A. R. Pal, RSC Adv. 87, 46970 (2014). https://doi.org/10.1039/C4RA07833K

  24. A. J. Hart, A. H. Slocum, and L. Royer, Carbon 44, 348 (2006). https://doi.org/10.1016/j.carbon.2005.07.008

    Article  CAS  Google Scholar 

  25. S. A. Moshkalyov, A. L. Moreau, H. R. Guttierrez, et al., Mater. Sci. Eng. B 112, 147 (2004). https://doi.org/10.1016/j.mseb.2004.05.038

    Article  CAS  Google Scholar 

  26. O. K. Alexeeva and V. N. Fateev, Altern. Energy Ecol., No. 7, 14 (2015). https://doi.org/10.15518/isjaee.2017.25-27.088-099

  27. D. V. Sidelev and V. P. Krivobokov, Vacuum 160, 418 (2019). https://doi.org/10.1016/j.vacuum.2018.12.001

    Article  CAS  Google Scholar 

  28. O. K. Alekseeva, A. I. Mikhalev, E. K. Lutikova, et al., Catalysts 8, 665 (2018). https://doi.org/10.3390/catal8120665

    Article  CAS  Google Scholar 

  29. I. E. Baranov, V. I. Porembskii, E. K. Lyutikova, et al., Chem. Probl., No. 4, 489 (2019).

  30. N. G. Chechenin, P. N. Chernykh, E. A. Vorobyeva, and O. S. Timofeev, Appl. Surf. Sci. 275, 217 (2013). https://doi.org/10.1016/j.apsusc.2012.12.162

    Article  CAS  Google Scholar 

  31. N. A. Ivanova, O. K. Alekseeva, V. N. Fateev, et al., Int. J. Hydrogen Energy 44, 29529 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.096

    Article  CAS  Google Scholar 

  32. O. K. Alekseeva, A. I. Mikhalev, E. K. Lutikova, et al., Catalysts 8, 665 (2018). https://doi.org/10.3390/catal8120665

    Article  CAS  Google Scholar 

  33. A. I. Kuz’michev, Magnetron Spray Systems, Vol. 1: Introduction to the Physics and Technology of Magnetron Sputtering (Avers, Kiev, 2008) [in RUssian].

  34. A. Ostroverkh, V. Johánek, M. Dubau, et al., Int. J. Hydrogen Energy 44, 19344 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.206

    Article  CAS  Google Scholar 

  35. O. Guellatia, D. Béginb, F. Antoni, et al., Mater. Sci. Eng. B 231, 11 (2018). https://doi.org/10.1016/j.mseb.2018.03.001

    Article  CAS  Google Scholar 

  36. Z. Xie, G. Guofen Chen, X. Yu, et al., Int. J. Hydrogen Energy 40, 8958 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.129

    Article  CAS  Google Scholar 

  37. J. Lin, Y. Yang, H. Zhang, et al., Ceram. Int. 46, 3837 (2020). https://doi.org/10.1016/j.ceramint.2019.10.107

    Article  CAS  Google Scholar 

  38. H. Koji, H. Furuta, K. Sekiya, et al., Diamond Relat. Mater. 36, 1 (2013). https://doi.org/10.1016/j.diamond.2013.02.002

    Article  CAS  Google Scholar 

  39. M. W. Lee, M. A. Haniff, A. S. Teh, et al., J. Exp. Nanosci. 10, 1232 (2014).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project nos. 20-08-00927, 18-29-23030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Ivanova.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudinova, E.S., Vorobyeva, E.A., Ivanova, N.A. et al. A Magnetron Sputtering Method for the Application of the Ni Catalyst for the Synthesis Process of Carbon Nanotube Arrays. Nanotechnol Russia 15, 715–722 (2020). https://doi.org/10.1134/S1995078020060129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020060129

Navigation